- Review
- Open access
- Published:
Recent advances in targeting obesity, with a focus on TGF-β signaling and vagus nerve innervation
Bioelectronic Medicine volume 11, Article number: 10 (2025)
Abstract
Over a third of the global population is affected by obesity, fatty liver disease (Metabolic Dysfunction-Associated Steatotic Liver Disease, MASLD), and its severe form, MASH (Metabolic Dysfunction-Associated Steatohepatitis), which can ultimately progress to hepatocellular carcinoma (HCC). Recent advancements include therapeutics such as glucagon-like peptide 1 (GLP-1) agonists and neural/vagal modulation strategies for these disorders. Among the many pathways regulating these conditions, emerging insights into transforming growth factor-β (TGF-β) signaling highlight potential future targets through its role in pathophysiological processes such as adipogenesis, inflammation, and fibrosis. Vagus nerve innervation in the gastrointestinal tract is involved in satiety regulation and energy homeostasis, and vagus nerve stimulation has been applied in weight loss and diabetes. This review explores clinical trials in obesity, novel therapeutic targets, and the role of TGF-β signaling and vagus nerve modulation in obesity-related liver diseases and HCC.
Introduction
Obesity is a global epidemic affecting over a billion adults and children worldwide (WHO 2018). Approximately 75.27% of obese individuals develop metabolic dysfunction-associated steatotic liver disease (MASLD), while 33.67% progress to metabolic dysfunction-associated steatohepatitis (MASH) (Quek et al. 2023). Obesity is also linked to 65–78% of hypertension cases (Garrison et al. 1987), 75% of diabetes cases (Cioana et al. 2022), and 40% of cancers (CDC 2023). Moreover, every 1 kg/m² increase in body mass index (BMI) in 70-year-old women is associated with a 36% higher risk of Alzheimer’s disease, while a 5 kg/m² increase in BMI corresponds to a 29% greater risk of coronary heart disease and a 31% increase in all-cause mortality (Berrington de Gonzalez et al., 2010; Bogers et al. 2007; Gustafson et al. 2003). The prevalence of obesity varies across ethnic groups, with African Americans having the highest rate (36.1%), followed by Hispanics (28.7%), Whites (24.5%), and Asians (7.1%) (Kirby et al. 2012). Men have a slightly higher prevalence of obesity (43.0%) compared to women (41.9%) (Diseases 2021). These alarming statistics underscore the urgent need to address the causes of obesity and develop innovative approaches to mitigate its associated diseases.
An imbalance between energy intake and expenditure results in excess energy stored as triglycerides in adipose tissue, ultimately leading to obesity (Hagberg and Spalding 2024). Adipose tissue is categorized into white adipose tissue (WAT) and brown adipose tissue (BAT). WAT primarily stores energy and regulates satiety through large lipid droplets, while BAT dissipates energy as heat via its mitochondria-rich structure, playing a crucial role in thermoregulation. Dysregulation of these tissues contributes to the pathology of obesity and its associated diseases. Multiple signaling pathways are implicated in obesity, offering potential therapeutic targets. Among them, the Mitogen-Activated Protein Kinase (MAPK) pathway plays dual roles by regulating both adipogenesis and inflammation (Bost et al. 2005; Lawan et al. 2018); AMP-Activated Protein Kinase (AMPK) Pathway that reduces obesity by inhibiting adipogenesis and promoting thermogenesis, particularly in BAT (Martinez de Morentin et al. 2014). The Transforming Growth Factor-β (TGF-β) Pathway exerts complex regulatory effects on adipogenesis, inflammation, and energy expenditure. TGF-β signaling promotes inflammation in WAT while modulating thermogenesis and BAT function, influencing the overall metabolic state (Yadav et al. 2011). Dysregulation of this pathway is implicated in the progression of MASLD, MASH, and hepatocellular carcinoma (HCC) (Chen et al. 2018; Wang et al. 2021; Yang et al. 2014, 2024). The autonomic nervous system (ANS), particularly the parasympathetic vagus nerve, plays a crucial role in the neural regulation of obesity. The vagus nerve transmits signals related to food ingestion to the central nervous system (CNS), helping to regulate satiety, gastric motility, and gastric emptying (Bai et al. 2019). Vagus nerve dysfunction, commonly seen in obesity, reduces its regulatory efficiency (Lee et al. 2012; Loper et al. 2021).
Therapeutic advances
Recent FDA-approved drugs and clinical trials offer hope for addressing obesity and its related conditions (see Table 1). Glucagon-like peptide 1 (GLP-1) receptor agonist (GLP-1 RA) Semaglutide and Tirzepatide, dual GIP/GLP-1 receptor agonists, have shown significant efficacy in reducing body weight and improving glucose control (Jastreboff et al. 2022; Wilding et al. 2021). They are highly effective, with 15% and 20.9% baseline weight reduction rates. Other GLP-1 RA, such as Orforglipron (Wharton et al. 2023), Liraglutide (Pi-Sunyer et al. 2015), CagriSima (Frias et al. 2023), GIP/GLP-1/glucagon RA, such as Retatrutide (Jastreboff et al. 2023) also reduce body weight ~ 10-15%. For type 2 diabetes, Tirzepatide was superior to Semaglutide (Frias et al. 2021). Resmetirom improves MASH by activating thyroid hormone receptor-beta (THR-β), which promotes lipophagy and hepatic fatty acid β-oxidation, thereby reducing liver fat (Harrison et al. 2023). 29.9% of patients taking 100-mg Resmetirom show MASH resolution (Harrison et al. 2024). However, these drugs are challenged with long-term effectiveness, as most patients taking Semaglutide regain two-thirds of their lost weight after one year of withdrawal (Wilding et al. 2022). More than 30% of users also stop taking these drugs within the first month, and only 42% of users meet the 12-week definition of clinical success (Intelligence 2024). Furthermore, 13.4% of patients treated with Semaglutide and 17–21% of patients treated with Tirzepatide do not achieve body weight reductions of even 5%, highlighting the need for alternative therapeutics to treat obesity (Garvey et al. 2023; Wilding et al. 2021). Treatment with Efruxifermin over 24 weeks, a Fibroblast growth factor 21 (FGF21) analogue, improved liver fibrosis at least one stage in patients with F2 or F3 fibrosis (Harrison et al. 2023).
Obesity not only contributes to metabolic disorders such as MASLD and MASH but also elevates the risk of cancers, particularly hepatocellular carcinoma (HCC). Chronic inflammation and lipid accumulation in the liver, driven by obesity, activate TGF-β signaling pathways, promoting hepatic fibrosis and metabolic dysregulation. Emerging therapies, such as Resmetirom (Rezdiffra), are designed to target these pathways and offer promising treatment options for MASH (Harrison et al. 2024; Harrison, Taub, Harrison et al. 2023a, b; Kokkorakis et al. 2024). Obesity-associated neural and metabolic dysfunction exacerbates these processes, establishing TGF-β as a critical link between obesity and cancer. Experimental mouse models with TGF-β signaling deficiencies shed light on its role in regulating obesity, MASLD, MASH, and HCC. For example, TGF-β receptor knockout in adipose or hepatic tissue leads to reduced inflammation, enhanced thermogenesis, and resistance to obesity-induced liver diseases (Wankhade et al. 2018; Yang et al. 2014). Neutralizing antibodies against the activin receptor-like kinase 7 (ALK7), induced a significant loss of adipose mass and improved insulin resistance in genetic and diet-induced obesity mouse models (Zhao et al. 2023). Blocking activin type II receptors (ActRII) signaling by monoclonal antibody Bimagrumab combined with GLP-1 RA Semaglutide can reduce fat mass while potentially preserving lean mass- although this remains controversial (Nunn et al. 2024).
Emerging non-invasive therapies, such as ultrasound stimulation of the vagus nerve, have shown promise in improving metabolic outcomes, including weight reduction, glucose homeostasis, and inflammatory modulation (Cotero et al. 2022; Huerta et al. 2021). In ageing septic rats, ghrelin/growth hormone treatment reverses immunosuppression by inhibiting the production of TGF-β through the vagus nerve (Zhou et al. 2020). Additionally, crosstalk between TGF-β signaling and neural pathways is evident by neural circuits that control appetite and energy balance modulated by TGF-β signaling in the hypothalamus and brainstem (Mendes et al. 2018; Yan et al. 2014) (Fig. 1). Disruptions in TGF-β signaling in these regions can lead to hyperphagia and obesity. This review explores the intersection of TGF-β signaling, neural regulation, and metabolic disorders in the context of obesity, MASLD, MASH, and HCC. Advances in mouse models and human trials will continue to inform strategies for modulating TGF-β and neural pathways, offering hope for treatments targeting the metabolic and oncogenic consequences of obesity.
TGF-β signaling in obesity and related diseases. Overnutrition, Western diet, and increased circulating Fatty acids and glucose induces TGF-β expression and hypothalamic inflammation. Elevated TGF-β signaling interacts with other inflammatory pathways, promoting hypothalamic inflammation, which disturbs hunger and satiety signaling and disrupts energy balance. Under normal conditions (left), the TGF-β/Smad3/SPTBN1 pathway maintains lipid and energy homeostasis in the liver, preventing obesity, fibrosis, and cancer by directly suppressing key regulators like CDK4 and Myc. However, excessive energy intake, particularly from a Western diet, triggers Caspase-3-mediated cleavage of SPTBN1, impairing its interaction with SMAD3. This disruption promotes hepatic injury, lipogenesis, and oncogenic transformation, increasing susceptibility to metabolic syndrome and cancer. In adipose tissue (top right), elevated TGF-β levels drive lipogenesis, expansion of white adipose tissue (WAT), whitening of brown adipose tissue (BAT), and suppression of mitochondrial biogenesis. These changes contribute to heightened inflammation, exacerbating metabolic disturbances
Mechanisms of obesity
WAT releases the adipokine leptin, which regulates food intake, energy expenditure, and sympathetic innervation, while its deficiency impairs thermogenesis and lipolysis, contributing to poor fat metabolism and severe obesity (Wang et al. 2020). WAT also releases proinflammatory cytokine tumor necrosis factor (TNF)-α, which influences hyperinsulinemia in obesity, and proinflammatory cytokine interleukin (IL)-6, which produces free fatty acids (FFAs), causing poor glucose and liver metabolism (Hotamisligil et al. 1995; Luan et al. 2023; Wueest and Konrad 2018). BAT expresses uncoupling protein 1 (UCP1), which uncouples the electron transfer chain from ATP synthesis to generate heat. Thermogenic fat is critical to adapting to cold temperatures and protects against obesity and metabolic dysfunction (Gomez-Hernandez et al. 2016; Valenzuela et al. 2023). BAT also releases chemokine C-X-C motif chemokine ligand-14 (CXCL14), which recruits M2 macrophages to WAT, promoting browning (Villarroya et al. 2019). Of the multiple signaling pathways involved in obesity, the mitogen-activated protein kinase (MAPK) signaling members, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), promote obesity by enhancing inflammation, insulin resistance, and adipogenesis. At the same time, p38 MAPK inhibits obesity by increasing thermogenesis and activating BAT (Lawan et al. 2018; Solinas and Becattini 2017; Wen et al. 2022). Skeletal muscle knockout of mitogen-activated protein kinase phosphatase 1 (MKP1-MKO) raises both p38 MAPK and JNK phosphorylation. At 16 weeks of HDF feeding, MKP1-MKO mice weigh ∼20% less, with marked decreases in liver weight and hepatic triglyceride accumulation than their littermate controls. Consistent with this phenotype, MKP1-MKO livers exhibit significantly decreased expression of lipogenic genes peroxisome proliferator-activated receptor gamma (PPARG) and sterol regulatory element binding proteins 1c (SREBP1C) (Lawan et al. 2018). Similarly, dysregulated phosphatidylinositol 3-kinase (PI3K)/AKT signaling is associated with obesity and insulin resistance (Li et al. 2017; Savova et al. 2021). Interestingly, human phosphatase and tensin homolog (PTEN) mutations that lead to decreased PTEN expression increase the risk of obesity (Pal et al. 2012).
Pathways involved in obesity
AMPK activation reduces eukaryotic translation initiation factor 2α (eIF2α) and SREBP-1 levels, reducing adipogenesis (Desjardins and Steinberg 2018; Garcia and Shaw 2017; Martinez de Morentin et al. 2014). Overexpression of constitutively active AMPK in the ventromedial hypothalamus reverses the weight loss in ovariectomy rats treated with estradiol. It is also associated with reduced UCP1, peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α), and PGC1β expression in the BAT (Martinez de Morentin et al. 2014). SREBP-1 promotes lipogenesis and the release of FFAs, resulting in obesity. However, its activity is inhibited by bile acids, Farnesoid X receptor (FXR) agonists, and FGF19 analogs, preventing lipogenesis (Clifford et al. 2021; Zhou et al. 2017). FGF21 also reduces hepatic steatosis by inhibiting lipogenesis and increasing energy expenditure, insulin sensitivity (Xu et al. 2009).
Among the significant signaling pathways implicated in fibrosis and obesity and its associated diseases, the transforming growth factor-β (TGF-β) pathway has garnered recent attention due to its complex role in adipogenesis, inflammation, and energy expenditure. Obese humans and mice exhibit elevated TGF-β levels, with up to a 5-fold increase of TGF-β expression in obese mice. Blocking TGF-β signaling genetically (SMAD3−/−) and pharmacologically (anti-TGF-β antibody, 1D11) in mice lead to protective effects: decreased body weight gain and fat mass, improved insulin sensitivity, ameliorated hepatic steatosis. Additionally, almost 40% of HCC samples have somatic mutations in at least one gene whose product is a member of the TGF-β signaling pathway (Chen et al. 2018; Waddell et al. 2015).
TGF-β signaling: overview
The TGF-β signaling pathway governs many cellular processes, including proliferation, differentiation, apoptosis, and extracellular matrix (ECM) production (Tan et al. 2012; Wrana et al. 1994). This pathway is initiated when TGF-β ligands (TGF-β1, TGF-β2, and TGF-β3) bind to TGF-β receptor types I and II, activating SMAD proteins that modulate gene expression (Feng and Derynck 1997; Massague 2012). Inhibitory SMADs, such as SMAD6 and SMAD7, counter this process by preventing receptor-regulated SMAD (R-SMAD) phosphorylation (Imamura et al. 1997; Kamiya et al. 2010). Beyond its SMAD-dependent mechanism, TGF-β also signals through SMAD-independent pathways. The TGF-β/Nodal subfamily encompasses TGF-β1, TGF-β2, TGF-β3, Nodal, Activins, growth differentiation factors (GDFs), Inhibin (which counteracts activin receptors), and Lefty1 and Lefty2 (which inhibit Nodal co-receptors). The bone morphogenic protein (BMP) subfamily includes BMPs, GDFs, anti-Mullerian hormone (AMH), and BMP3, a BMP receptor antagonist (Massague and Sheppard 2023). While this review centers on SMAD-dependent pathways, SMAD-independent signaling also contributes to obesity-related metabolic disorders (Fig. 1).
TGF-β ligands in obesity
TGF-β1
Elevated TGF-β1 levels are detected in the adipose tissue of obese humans and mice, and TGF-β1 inhibition confers protection against obesity (Alessi et al. 2000; Samad et al. 1997; Yadav et al. 2011) (Fig. 1). Inhibiting TGF-β1 disrupts Smad3 signaling, enhancing PGC1α activity, which induces mitochondrial biogenesis, UCP1 expression, and a lean phenotype in mice (Yadav et al. 2011). Insulin, induced by feeding, stimulates TGF-β1 expression in adipocytes, activating the TGF-β-SMAD3 pathway. This cascade promotes ECM remodeling, focal adhesion kinase (FAK)-AKT signaling, and adipocyte lipogenesis (Toyoda et al. 2022). Interestingly, the adipose-specific deletion of Interleukin-17 receptor C (IL-17RC) reduces TGF-β1 levels, impairing sympathetic innervation in BAT. Restoring TGF-β1 rescues innervation, underscoring its interaction with immune cells in BAT (Hu et al. 2020).
In the liver, elevated hepatic TGF-β1 promotes gluconeogenesis via adenosine 3′5′-cyclic monophosphate (cAMP)-dependent protein kinase-mediated forkhead box O (FoxO) 1 phosphorylation at serine 273, disrupting energy balance in obese, insulin-resistant mice (Pan et al. 2023) (Fig. 1). Elevated TGF-β1 in diabetic patients also promotes hepatic stellate cell (HSC) activation and gluconeogenesis (Sakurai et al. 2022). TGF-β1 knockout (KO) mice exhibit reduced adipose tissue formation and liver lipid accumulation alongside improved metabolic and liver function (Lee et al. 2023). Conversely, cardiac-derived TGF-β1 shields against weight gain and glucose intolerance by mitigating adipose inflammation and enhancing fatty acid oxidation (Longenecker et al. 2021).
TGF-β2
Exercise induces the second ligand, TGF-β2 via lactate signaling, which enhances glucose and fatty acid metabolism in adipose tissue (Takahashi et al. 2019). TGF-β2 treatment reverses glucose intolerance and improves metabolic parameters in high fat diet (HFD)-fed mice, while its inhibition reduces mitochondrial respiration in human adipocytes. Restoring TGF-β2 maintains UCP1 expression during adipogenesis, underscoring its role in metabolic regulation (Halbgebauer et al. 2021). However, the study also reported hepatic TGF-β2 upregulation correlates with fibrosis and HCC progression in mouse models and cell lines (Dropmann et al. 2016).
TGF-β3
The third ligand-TGF-β3 levels rise in white adipose tissue (WAT) during obesity, stimulating adipocyte precursor proliferation (Petrus et al. 2018). Mice lacking Kruppel-like factor (KLF) 10 in CD4+ T cells show decreased TGF-β3 secretion, impaired regulatory T-cell (Treg) migration, and develop obesity, insulin resistance, and fatty liver. Transferring wild-type CD4+ Tregs reverses these effects, highlighting TGF-β3’s regulatory role in immune-metabolic interactions (Wara et al. 2020).
TGF-β receptors in obesity
TGF-βRI
Deletion of TGF-βRI in adipose tissue fosters beige adipogenesis (Wankhade et al. 2018). Pharmacological inhibition of TGF-βRI (e.g., RepSox) promotes brown adipogenesis via UCP1 upregulation, preventing obesity (Tu et al. 2019). TGF-βRI inhibition also mitigates MASLD progression, with agents such as Isoquercetin reducing fibrosis and inflammation (Qin et al. 2018). Conversely, TGF-βRI upregulation exacerbates MASLD and fibrosis, as seen in models of SIX1 (Sine oculis homeobox homologue 1) or SHMT2 (Serine hydroxymethyl transferase 2) expression (Gao et al. 2023a; Y. Gao et al., b).
TGF-βRII
Similarly, TGF-βRII promotes obesity and its hepatic complications. TGF-βRII deletion improves thermogenic gene expression and reduces HFD-induced adiposity and resolved MASH (Yang et al. 2014; Zhao et al. 2022). Hepatic miRNA let-7b-5p is a potential reason why TGF-βRII is pro-fibrotic, as let-7b-5p is much higher in MASLD patients when TGF-β signaling is enhanced, whereas let-7b-5p is reduced in TGF-βRII KO in hepatocytes (Zhao et al. 2022).
SMAD signaling in obesity
SMAD proteins regulate lipid metabolism and inflammation but demonstrate complex roles. Overexpression of SMAD2/3/4 improved, whereas overexpression of SMAD7 worsened obesity-associated metabolic syndromes in HFD-fed obese mice (Seong et al. 2018). Conversely, adipocyte deletion of SMAD3 protects mice from obesity, diabetes, and hepatic steatosis (Yadav et al. 2011). SMAD3 also contributes to insulin resistance and type 2 diabetes. SMAD3 represses insulin gene transcription and impairs β-cell function, while its deficiency improves glucose tolerance, insulin sensitivity, and diabetic kidney injuries (Lin et al. 2009; Sun et al. 2015; Wang et al. 2022).
SMAD3 adaptor proteins
Adaptor proteins in the TGF-β pathway, such as βII-Spectrin, Smad anchor for receptor activation (SARA), and Disabled-2 (Dab2), play critical roles in facilitating SMAD protein activation and regulation (Mishra and Marshall 2006; Penheiter et al. 2010). Among them, βII-Spectrin, encoded by the SPTBN1 gene, is a key adaptor for SMAD3. It promotes SMAD3 activation by TGF-β receptors and interacts with SMAD3 in the nucleus to regulate gene transcription (Fig. 1). Elevated levels of SPTBN1 and Caspase-3 have been observed in both obese humans and mice, linking SPTBN1 to obesity pathogenesis (Rao et al. 2021).
New targets: SMAD3 adaptor SPTBN1
Liver-specific knockout of SPTBN1 in mice protects against obesity, providing a potential therapeutic avenue for metabolic disorders (Rao et al. 2021). HFD and Western diet (WD) induce Caspase-3-mediated cleavage of SPTBN1, and the resulting fragments translocate to the nucleus, driving the expression of pro-obesity genes (Rao et al. 2021). Therapeutic strategies targeting Caspase-3 cleavage of SPTBN1 or modulating nuclear translocation of SPTBN1 cleavage products could mitigate obesity-related metabolic dysregulation (Fig. 1).
In cancer, particularly hepatocellular carcinoma (HCC), high SPTBN1 expression is associated with poor prognosis, positioning it as a potential biomarker and therapeutic target (Rao et al. 2021). SPTBN1 regulates p65 levels, suppressing inflammatory cytokine expression and thereby reducing inflammation and immune suppression, hallmarks of liver cancer (Lin et al. 2021). SPTBN1 also interacts with suppressor of variegation 3-9-enhancer of zeste-trithorax domain containing lysine methyltransferase (SETD) 7, which methylates Yes-associated protein (YAP), a key regulator of the Hippo signaling pathway and tumorigenesis. This interaction enhances autophagy in hepatic stem cells, underscoring its significance in maintaining cellular homeostasis and preventing malignant transformation (Chen et al. 2022). This leads to multiple future therapeutically relevant opportunities: Obesity Treatment: Modulating SPTBN1 expression or function could provide a novel therapeutic strategy to combat obesity by inhibiting the Caspase-3–SPTBN1 axis and its downstream effects. Cancer Therapy: Blocking toxic SPTBN1 cleavage or enhancing its regulatory interactions (e.g., with SETD7 or autophagy pathways) could suppress HCC progression. Therapeutics targeting SPTBN1’s role in Wnt signaling or its interactions with YAP might also limit tumorigenesis. Inflammation Control: SPTBN1-mediated regulation of inflammatory pathways positions it as a dual target for treating metabolic disorders and cancer by reducing systemic and local inflammation. Targeting βII-Spectrin (SPTBN1) in a tissue-specific manner offers a promising avenue for managing obesity and its complications, including progression to liver diseases and HCC (Rao et al. 2021; Yang et al. 2024). Continued research into its molecular interactions and regulatory networks will refine its potential as a therapeutic target.
BMPs
BMP4 promotes WAT browning and reduces WAT mass, improving metabolic health in obese models (Modica et al. 2016; Qian et al. 2013; Son et al. 2011). Liver-specific BMP4 expression reduces lipid accumulation and MASLD progression via the mammalian target of rapamycin complex (mTORC) 1 pathway (Peng et al. 2019).
GDFs
GDF15 improves metabolic parameters, including insulin sensitivity and glycemic control, in obesity models via glial cell line-derived neurotrophic factor (GDNF) family receptor α–like (GFRAL) receptor signaling (Sjoberg et al. 2023; Wang et al. 2023; Yang et al. 2017). Conversely, elevated GDF8 (myostatin) exacerbates muscle loss and metabolic dysfunction, presenting a therapeutic target for obesity-related sarcopenia (Hittel et al. 2009; McPherron and Lee 1997; Rebbapragada et al. 2003). Furthermore, small molecule inhibitors of GDF8/Activin (KER-065) and antibodies of its receptor ActRII (Bimagrumab) have shown promising results in promoting weight loss while preserving muscle mass in both animal models and clinical trials (Heymsfield et al. 2021; Keros, 2024).
Activins
Activin A maintains adipocyte progenitor populations and promotes obesity via macrophage-mediated secretion (Zaragosi et al. 2010). Neutralizing Activin A decreases cell proliferation and adipocyte differentiation, revealing potential for therapeutic interventions.
Targeting TGF-β signaling to alleviate obesity
Despite significant advances in understanding the role of the TGF-β pathway in obesity, obesity-induced diseases, and cancer, critical questions remain about whether this pathway functions predominantly as a driver or suppressor in these conditions. Addressing this dual role is essential for designing effective therapeutic interventions. Leveraging new technologies can provide deeper insights into how obesity-related metabolic changes influence disease progression and cancer development.
Advances in imaging technologies
Recent breakthroughs in microscopy have revolutionized the study of TGF-β signaling. For instance, Single-molecule fluorescence Imaging and Tracking (SMIT) enables real-time observation of individual SMAD3 molecules docking at cell membranes and being activated by TGF-βRI (Li et al. 2016). Stochastic Optical Reconstruction Microscopy (STORM) provides even higher resolution, making it an invaluable tool for elucidating intricate protein interactions in the TGF-β pathway (Xu et al. 2017). Cryo-electron microscopy (Cryo-EM) has revealed that integrin αvβ8 can bind to latent TGF-β (L-TGF-β) and activate TGF-β/SMAD signaling without releasing TGF-β from its latent complex, providing a novel perspective on pathway activation (Campbell et al. 2020).
AI-Driven insights into TGF-β regulation
Artificial intelligence (AI) tools like AlphaFold have uncovered unexpected molecular interactions, such as the extensive interface between fibrillin and latent TGF-β binding protein 1 (LTBP1) in supporting TGF-β activation (Lockhart-Cairns et al. 2022). These findings open new avenues for therapeutic targeting, particularly in conditions where TGF-β activation is dysregulated.
Limitations of current models and the promise of organoids
While mouse models have been invaluable for studying TGF-β signaling, they often fall short in replicating human-specific conditions (Table 2). Organoids, three-dimensional structures derived from stem cells or primary tissues, offer a promising alternative. These models closely mimic the architecture and functionality of human tissues, providing a more accurate platform for studying TGF-β signaling in obesity-related diseases. Knockdown of TGF-βRII in gastric organoids with co-occurring CDH1 (encodes protein E-cadherin) and TP53 mutations induces features of metastatic diffuse gastric cancer, including severe dysplasia, focal invasion, and robust in vivo tumorigenicity. This underscores the critical role of TGF-β signaling in tumor progression (Nadauld et al. 2014). Liver organoids mimicking MASLD have been established using three key factors: free fatty acids (FFAs), the genetic variant PNPLA3I148M, and APOB/MTTP mutations related to familial hypo-/non-β lipoproteinemia. These models are proving instrumental in drug screening and advancing our understanding of MASLD (Hendriks et al. 2023). Combining organoids with CRISPR-based screening has identified FADS2 (fatty acid desaturase 2) as a critical determinant of hepatic steatosis from a 35-gene lipid metabolism dataset. This highlights the potential of organoid models in uncovering gene functions in TGF-β signaling under obesity-induced metabolic conditions (Hendriks et al. 2023). The integration of advanced imaging techniques, AI-driven tools, and organoid technologies provides an unprecedented opportunity to unravel the complex dynamics of TGF-β signaling. These tools not only enhance our understanding of the pathway’s role in obesity and related diseases but also pave the way for personalized therapeutic strategies. For example, by leveraging these advanced methodologies, we can refine therapeutic approaches to mitigate obesity, its associated metabolic complications, and its progression to cancer.
Limitations of targeting TGF-β signaling
The high expression of L-TGF-β isoform in many tissue types of healthy individuals results in limited effectiveness by antibodies and other biologics targeting TGF-β isoforms. Given the critical and pleiotropic roles that TGF-β signaling plays in normal development, tissue homeostasis, and immunomodulation, broad inhibition of TGF-β signaling often results in unacceptable toxicity. Preclinical studies have shown pan-inhibition TGF-β (monoclonal antibodies or small molecule inhibitor) to cause multiple organs damage, including cardiovascular toxicity (degeneration/necrosis and inflammation in the aortic root), hemorrhage in the GI tract and abdomen, and abnormal wound healing (Mitra et al. 2020; Stauber et al. 2014). Currently, only a few drugs targeting TGF-β pathway are under clinical trials. Integrin αvβ1 inhibitor (a small molecule, PLN-1474) is in a Phase 1 trial for MASH fibrosis (Slack et al. 2022) and GDF8/Activin A inhibitor (K065) is in a Phase 1 trial for obesity and muscular dystrophy (Keros, 2024). Other drugs targeting TGF-β pathway have been withdrawn because their preclinical effects did not translate to humans or due to the occurrence of clinical adverse events (Baranda et al. 2024; Kossen 2019; Smith et al. 2024). Improving our understanding and monitoring of adverse effects are essential factors for successfully inhibiting this key pathway. Most of all, targeting specific aspects through, for example adaptor proteins such as SPTBN1 could limit such toxicities (Yang et al. 2024).
The role of the autonomic nervous system in regulating energy balance and therapeutic implications
Innervation of vagus nerve and energy homeostasis
The autonomic nervous system (ANS) plays a pivotal role in maintaining energy balance by regulating both food intake and energy expenditure. Within the ANS, the parasympathetic nerve transmits critical information about food ingestion and digestion to the central nervous system (CNS), influencing satiety by modulating gastric motility, emptying, and gut hormone release (Bai et al. 2019). This regulatory feedback loop is essential for maintaining body weight homeostasis. The vagus nerve provides the gastrointestinal tract, pancreas, and liver parasympathetic innervation (Fox and Powley 1985) (Fig. 2). The vagus nerve contains approximately 80% sensory fibers (afferent) and 20% motor fibers (efferent). The afferent vagal pathways are likely the most crucial link between the gut and brain in modulating satiety signals. Vagal afferent neurons receive post-ingestive information from the GI tract through three primary mechanisms: mechanoreceptor stimulation in response to gastric distension, release of gut hormones (GLP-1, CCK, PYY et al.) triggered by the nutritional composition of consumed food, and the direct action of certain nutrients (e.g. short-chain fatty acids). Metabolic information also is conveyed via chemoreceptors located in the hepatoportal system (Yi et al. 2010). Signals from peripheral receptors travel through vagal afferents to the area postrema/nucleus of the solitary tract (AP/NTS) region in the brainstem, which integrates sensory input from the GI tract and abdominal viscera, as well as oral taste information. The NTS, in turn, projects back to the gut via vago-vagal reflexes through the dorsal motor nucleus (DMN) (Powley 2021) (Pavlov and Tracey 2012) (Fig. 2). Activation of this pathway regulates gut responses, including intestinal transit time, motility, absorption rates, and nutrient exposure of enteroendocrine cells. These processes influence the release of GI hormones and pancreatic secretions, ultimately playing a key role in satiety regulation. Disruptions in vagus nerve activity are commonly observed in metabolic disorders such as obesity and type 2 diabetes mellitus (T2DM) (Lee et al. 2012; Loper et al. 2021). Both high fat and carbohydrate diets impair vagal activity and disrupt satiety regulation (Loper et al. 2021). Reduced vagal tone in these conditions exacerbates metabolic dysregulation, prompting researchers to investigate novel non-pharmacologic strategies targeting the vagus nerve.
Vagus nerve innervation and regulation of satiety. Vagus nerve innervations of metabolic organs are depicted. Peripheral signals related to satiety and hunger signal reach the nucleus of the solitary tract (NTS) in the brainstem via afferent vagal nerves or via the circulation reach the median eminence of the hypothalamus and area postrema (AP) of the brainstem. The NTS then projects to the dorsal motor nucleus (DMN), which modulates intestinal motility, secretion, glucose production, and pancreatic secretion through efferent vagal nerves. peptide tyrosine tyrosine, PYY; glucagon-like peptide-1, GLP-1; oxyntomodulin, OXM; cholecystokinin, CCK; fibroblast growth factor 21, FGF21; gastrointestinal, GI
Vagus nerve stimulation (VNS): A novel therapeutic frontier
Several studies have conceptualized treating obesity with the use of electrical stimulation of the stomach and performed initial animal and human studies in 1990’s (Cigaina et al. 1996, 1999), and confirmed that gastric electrical stimulation (GES) can effectively induce weight loss, with minimal disruption of physiology side effects of conventional bariatric procedures. Preliminary clinical trials have shown promising decreases in body weight and increases satiety by GES treatment (Cigaina 2002; D’Argent 2002). The actual mechanism of gastric stimulation has not yet been identified, data from animal and human studies have suggested potential mechanisms such as vagus nerve stimulation (VNS) (Burneo et al. 2002), fundic relaxation (Orthey et al. 2018), and ghrelin inhibition (De Luca et al. 2004). VNS has been approved for the treatment of refractory epilepsy since 1997 and the treatment of resistant depression later. Interestingly, these studies reported refractory epilepsy patients lost body weight after VNS treatment (Burneo et al. 2002). VNS treatment and weight loss in resistant depression patients were positively correlated with initial BMI; at one year, the average weight loss was 7 kg, and the BMI drop was 2 kg/m2 (Pardo et al. 2007). Emerging evidence highlights the therapeutic potential of vagus nerve therapy in addressing obesity and related metabolic disorders.
Clinical trials of VNS in obesity related diseases
Multiple neuromodulation clinical trials for obesity and obesity related conditions have been conducted (Table 1). Currently, only vBloc (Maestro Rechargeable System) has been approved by FDA in 2015, other devices such as the Transcend™ implantable gastric stimulation (IGS) device (Shikora et al. 2009), and TANTALUS System (Sanmiguel et al. 2009) et al. are still being investigated. Different electric stimulation devices target various vagal areas: around the esophagogastric junction trunk by vBloc, anterior gastric wall by Transcend Implantable Gastric Stimulator, left cervical vagus by NCP model stimulator and auricular concha area vagus by Transcutaneous Electrical Nerve Stimulator. In European participants, the LOSS (Laparoscopic Obesity Stimulation Survey) study reported patients with gastric stimulation reached 21.0% excess weight loss (EWL) at 15 months (De Luca et al. 2004). The SHAPE (Screened Health Assessment and Pacer Evaluation) trial has shown that gastric stimulation did not decrease body weight (Shikora et al. 2009). The EMPOWER study revealed that at 12 months, vBloc treatment had a 17% EWL, not greater than 16% EWL in the control group (Sarr et al. 2012). Then, ReCharge (Maestro Rechargeable System for the Treatment of Obesity) trial reported vBloc at 12-month has a significant 24.4% EWL (9.2% of initial body weight loss) compared to 15.9% EWL (6.0% of initial body weight loss) in the control group (Ikramuddin et al. 2014), and sustained effects observed at 18–24 month (Apovian et al. 2017; Shikora et al. 2015), but not be viewed as clinically significant. In T2DM patients, vBloc therapy exhibited significant EWL (25 ± 4%, P < 0.0001), and HbA1c decrease (1.0 ± 0.2%, P = 0.02, baseline 7.8 ± 0.2%) at 12-month (Shikora et al. 2013). Transcutaneous auricular VNS (taVNS) via the ear vagus nerve stimulator have shown improved glucose tolerance (from 9.7 mmol/L to 7.5 mmol/L) in T2DM patients (Huang et al. 2014) (Table 1). So far, these electric stimulation trials have shown inconsistent results and far less weight loss than GLP-1 receptor agonists or bariatric surgery (Puzziferri et al. 2014). Therefore, further optimization is needed to increase the effectiveness of vagal modulation.
Mechanisms of VNS in obesity treatment
In a rat model, a battery-free VNS device at the surface of the stomach reduced body weight by 38% compared to the control groups. This significant reduction underscores the efficacy of VNS in modulating food intake and energy expenditure (Yao et al., 2018). Another rat model revealed VNS increased the number of mast cells in the GI wall and c-Fos expression in nodosal ganglia. This demonstrates that VNS can increase vagal afferent satiety signals (Gil et al. 2009). VNS also altered the gut hormones releasing. A diet-induced obese rat model reveals that VNS treatment significantly increased plasma GLP-1 (72.9 ± 8.4 vs. 44.3 ± 5.9, P = 0.012, vs. Sham) and PYY (72.3 ± 7.8 vs. 36.9 ± 7.9, P = 0.008, vs. Sham) levels (Dai et al. 2020). Banni et al. previously showed that VNS increased rat plasma non-esterified fatty acids (NEFA), hepatic PPARα expression and its potential ligand N-palmitoylethanolamide (PEA) expression in mesenteric adipose tissue (Banni et al. 2012); these results indicate VNS may increase lipolysis in white adipose tissue and fatty acid oxidation in the liver. One clinical study suggested VNS intervention was significantly correlated to BAT activity ((r = 0.935, P < 0.001) and increased energy expenditure (Vijgen et al. 2013). Under vBloc stimulation, multiple genes (e.g., CCKβ receptor and Leptin receptor) expression changed in the brainstem and hippocampus. Still, no changes in gut hormones (e.g., glucagon and GLP-1) were observed (Johannessen et al. 2017). Thus, vBloc may activates vagal signaling to the brain while blocking vagal signaling to the gut, resulting in increased satiety, reduced food intake, and ultimately, weight loss. Therefore, brain, GI tracts, liver, and adipose tissue respond to vagal modulation. Understanding the multiple aspects of these above mechanisms is key to maximizing the benefits of VNS in the future.
Development of non-invasive VNS
Ultrasound stimulation of the vagus nerve represents a novel, non-invasive approach to modulating neural and metabolic pathways in obesity. Among the promising techniques is peripheral focused ultrasound stimulation (pFUS), a representative method to activate vagus nerve pathways. Recent studies using pFUS targeting the porta hepatis demonstrated significant metabolic improvements in mouse models of obesity. An 8-week regimen of vagus nerve stimulation reduced Body weight and fat mass, Serum triglycerides (TG) and alanine aminotransferase (ALT) levels, Pro-inflammatory cytokines, such as tumor necrosis factor (TNF) and interleukin-1β (IL-1β). Additionally, pFUS improved glucose homeostasis in mice fed a Western diet, highlighting its potential to counteract diet-induced metabolic disturbances (Cotero et al. 2022; Huerta et al. 2021).
Regulation of TGF-β signal via vagal activity
In a septic rat model, vagus nerve activity has been demonstrated to inhibit TGF-β production under hormone treatment. (Zhou et al. 2020). In the rat myocardial infarction model, pharmacologically preserving vagal activity by pyridostigmine improved cardiac diastolic function and collagen deposition via inhibition of TGF-β1 and TGF-β1-activated kinase expression. (Lu et al. 2014). In two heart failure models, low-level of transcutaneous VNS protects cardiac function by anti-inflammatory and antifibrotic effects and decreases TGF-β production and collagen deposition (Elkholey et al. 2022; Wang et al. 2014). Thus, vagal stimulation suppresses TGF-β1 expression. However, in a Crohn’s disease pilot trial, VNS restored a homeostatic vagal tone, and reduced inflammation via increase of anti-inflammatory TGF-β and decrease of proinflammatory factors (Sinniger et al. 2020). Therefore, regulating TGF-β expression by vagal activity may depend on the specific states of inflammation, fibrosis progression and is context dependent.
Implications of VNS in obesity, MASLD, MASH, and cancer
Given the complex interplay between metabolic dysregulation and obesity-related diseases, including metabolic-associated steatotic liver disease (MASLD), metabolic-associated steatohepatitis (MASH), and cancer, VNS offers a promising avenue for therapeutic intervention: VNS directly addresses the dysregulated energy balance by reducing appetite, enhancing satiety, and promoting metabolic efficiency. These effects could reduce the burden of obesity-related comorbidities. By lowering circulating pro-inflammatory cytokines and improving liver function markers such as ALT, VNS may mitigate hepatic inflammation and fibrosis, critical drivers of MASLD and its progression to MASH. Chronic inflammation and obesity are well-established risk factors for cancer. By reducing systemic inflammation and promoting metabolic balance, VNS could play a role in lowering cancer risk in obese individuals.
Advantages of vagus nerve stimulation
VNS offers several advantages over traditional pharmacologic interventions:
-
Alternative Noninvasive VNS: the latest application of ultrasound in vagus nerve stimulation (e.g. pFUS) offers a non-invasive option at the sub-organ level, reducing the risk of complications associated with surgical.
-
Targeted Mechanism: VNS directly modulates neural circuits involved in energy and metabolic regulation, providing a precise therapeutic effect.
-
Multi-System Benefits: Beyond metabolic improvements, VNS may enhance gastrointestinal motility, liver function, and systemic inflammation, addressing the multifaceted consequences of obesity.
Limitations of VNS trials
While VNS treatments are effective at improving obesity and its related metabolic disorders by stimulating the vagus nerve, these clinical trials also have their limitations.
-
Placebo response issue. In VNS trials, ensuring a proper placebo control group is difficult because the participants can feel the stimulation effects of the VNS devices, which don’t provide true blinding. This leads to potential placebo responses that complicate the interpretation of results (Sarr et al. 2012).
-
Low participants compared to clinical drug trials. VNS trials have fewer participants due to high expenses and invasive procedures (Pardo et al. 2007). This limits the statistical power of these studies, which makes it harder to generalize findings.
-
Mild to moderate effects on weight loss. While VNS devices help with weight loss, these effects are usually mild to moderate compared to other standard interventions such as GLP-1 receptor agonists (Ozempic) or bariatric surgery (Fadel et al. 2023). This limits the widespread usage and adoption of VNS devices for treating obesity.
-
Surgical risks and long-term compliance. Although VNS devices are laparoscopically implanted, surgical risks still pose a threat to patients, such as infection, device malfunction, and nerve damage. Furthermore, the VNS devices require battery replacements every 4–8 years, which places a physical and financial burden on patients (Vonck et al. 2005). Evidence also shows that VNS can directly affect ventricular function, particularly in cases of ventricular fibrillation (VF), which is responsible for a significant portion of sudden cardiac deaths (Al-Khatib and Stevenson 2018). In animal models, VNS increases the variability of the dominant VF frequency and decrease left ventricular wall motion (Naggar et al. 2014). Additionally, VNS significantly reduced blood pressure, potentially inducing ischemia in organs (Naggar et al. 2014).
The application of VNS for metabolic diseases is still in its early stages, but its potential is evident. Future research should focus on: Long-Term Efficacy and Safety: Evaluating the sustained effects of VNS on weight management and metabolic health in human clinical trials. Optimization of Stimulation Protocols: Determining the optimal parameters for stimulation frequency, duration, and anatomical targeting. Identifying patient-specific factors that predict responsiveness to VNS could help tailor treatments and maximize efficacy.
Novel insights on synergistic strategies
Physical exercise can protect against several diseases, especially metabolism-associated disorders, and contribute to health maintenance. Recreational cyclists can suppress latent TGF-β1 activation and are associated with better lipid profiles (Eka Widiastuti et al. 2021). In skeletal muscle, increased TGF-β1 contributes to impaired exercise response by suppressing key mitochondrial regulators, such as PGC1α and AMPKα2 (Bohm et al. 2016). Therefore, one potential synergistic strategy may be combining the targeting of TGF-β pathway members or adaptor (e.g., Sptbn1) with physical exercise. As modulation of vagus nerve can downregulate TGF-β level (Elkholey et al. 2022; Go et al. 2022; Zhou et al. 2020), another synergistic strategy should be combining targeting TGF-β pathway with VNS. The efficacy of TGF-β signaling inhibition can potentially be enhanced through these combinations. Additionally, VNS can be targeted at the sub-organ level, allowing for more precise inhibition of TGF-β within specific organs rather than affecting the entire body. Specifically, in adipose tissue inhibition TGF-β signaling may suppress adipogenesis and lipogenesis. Targeting adipose tissue by VNS is difficult because WAT lacks significant vagal innervation (Giordano et al. 2006), but adipose tissue has been responsive to VNS indicating the possibility for vagal intervention (Banni et al. 2012). Combining VNS with lifestyle interventions, pharmacologic treatments, or emerging technologies (e.g., AI-driven monitoring systems) to enhance therapeutic outcomes is also a potential approach in the future.
Conclusions
The autonomic nervous system, particularly the vagus nerve, represents a promising target for non-pharmacologic interventions in obesity and its complications. Techniques such as VNS show potential in reducing body weight, improving metabolic markers, and alleviating inflammation. Because the prevalence of obesity, MASLD, MASH, and obesity-related cancer continues to rise, integrating VNS into targeting TGF-β therapeutic strategies offers a cutting-edge approach to combat these interrelated conditions. This review explores the intersection of TGF-β signaling, neural regulation, and metabolic disorders in the context of obesity, MASLD, MASH, and HCC. Advances in mouse models and human trials will continue to inform strategies for modulating TGF-β and neural pathways, offering hope for specific treatments targeting the metabolic and oncogenic consequences of obesity.
Data availability
No datasets were generated or analysed during the current study.
Abbreviations
- AI:
-
Artificial intelligence
- ALK7:
-
Activin receptor-like kinase 7
- ALT:
-
Alanine aminotransferase
- AMH:
-
Anti-Mullerian hormone
- AMPK:
-
AMP-Activated Protein Kinase
- ANS:
-
Autonomic nervous system
- AP:
-
Area postrema
- BAT:
-
Brown adipose tissue
- BMI:
-
Body mass index
- BMP:
-
Bone morphogenic protein
- cAMP:
-
Adenosine 3′5′-cyclic monophosphate
- CCK:
-
Cholecystokinin
- CNS:
-
Central nervous system
- Cryo-EM:
-
Cryo-electron microscopy
- CXCL14:
-
Chemokine C-X-C motif chemokine ligand-14
- Dab2:
-
Disabled-2
- DMN:
-
Dorsal motor nucleus
- ECM:
-
Extracellular matrix
- eIF2α:
-
Eukaryotic translation initiation factor 2α
- ERK1/2:
-
Extracellular signal-regulated kinase 1/2
- EWL:
-
Essential weight loss
- FADS2:
-
Fatty acid desaturase 2
- FAK:
-
Focal adhesion kinase
- FGF21:
-
Fibroblast growth factor 21
- FFAs:
-
Free fatty acids
- FoxO1:
-
Forkhead box O1
- FXR:
-
Farnesoid X receptor
- GDFs:
-
Growth differentiation factors
- GES:
-
Gastric Electrical Stimulation
- GFRAL:
-
GDNF family receptor α-like
- GLP-1:
-
Glucagon-like peptide 1
- GLP-1 RA:
-
GLP-1 receptor agonist
- HCC:
-
Hepatocellular carcinoma
- HFD:
-
High-fat diet
- HSC:
-
Hepatic stellate cell
- IL-1β:
-
Interleukin-1β
- IL-17RC:
-
Interleukin-17 receptor C
- JNK:
-
C-Jun N-terminal kinase
- KLF10:
-
Kruppel-like factor 10
- KO:
-
Knockout
- LTBP1:
-
Latent TGF-β binding protein 1
- MAPK:
-
Mitogen-activated protein kinase
- MASLD:
-
Metabolic-associated steatotic liver disease
- MASH:
-
Metabolic dysfunction-associated steatohepatitis
- mTORC1:
-
Mammalian target of rapamycin complex 1
- NTS:
-
Nucleus of the solitary tract
- PENS:
-
Percutaneous neurostimulation
- pFUS:
-
Peripheral focused ultrasound stimulation
- PGC1α:
-
Peroxisome proliferator-activated receptor-γ coactivator 1-α
- PI3K:
-
Phosphatidylinositol 3-kinase
- PPARG:
-
Peroxisome proliferator-activated receptor gamma
- PTEN:
-
Phosphatase and tensin homolog
- PYY:
-
Peptide tyrosine tyrosine
- SARA:
-
Smad anchor for receptor activation
- SETD7:
-
Suppressor of variegation 3-9-enhancer of zeste-trithorax domain containing lysine methyltransferase 7
- SHMT2:
-
Serine hydroxymethyl transferase 2
- SIX1:
-
Sine oculis homeobox homologue 1
- SMIT:
-
Single-molecule fluorescence imaging and tracking
- SREBP1C:
-
Sterol regulatory element binding proteins 1c
- STORM:
-
Stochastic optical reconstruction microscopy
- TG:
-
Triglycerides
- TGF-β:
-
Transforming growth factor-β
- THR-β:
-
Thyroid hormone receptor-beta
- TNF:
-
Tumor necrosis factor
- T2DM:
-
Type 2 diabetes mellitus
- UCP1:
-
Uncoupling protein 1
- VNS:
-
Vagus nerve stimulation
- WAT:
-
White adipose tissue
- WD:
-
Western diet
- YAP:
-
Yes-associated protein
References
Al-Khatib SM, Stevenson WG. Management of ventricular arrhythmias and sudden cardiac death risk related to ischemic and nonischemic cardiomyopathy. JAMA Cardiol. 2018;3(6):541–2. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/jamacardio.2018.0016.
Alessi MC, Bastelica D, Morange P, Berthet B, Leduc I, Verdier M, Geel O, Juhan-Vague I. Plasminogen activator inhibitor 1, transforming growth factor-beta1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes. 2000;49(8):1374–80. https://doiorg.publicaciones.saludcastillayleon.es/10.2337/diabetes.49.8.1374.
Apovian CM, Shah SN, Wolfe BM, Ikramuddin S, Miller CJ, Tweden KS, Billington CJ, Shikora SA. Two-Year outcomes of vagal nerve blocking (vBloc) for the treatment of obesity in the recharge trial. Obes Surg. 2017;27(1):169–76. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11695-016-2325-7.
Bai L, Mesgarzadeh S, Ramesh KS, Huey EL, Liu Y, Gray LA, Aitken TJ, Chen Y, Beutler LR, Ahn JS, Madisen L, Zeng H, Krasnow MA, Knight ZA. Genetic identification of vagal sensory neurons that control feeding. Cell. 2019;179(5):1129–e11431123. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2019.10.031.
Banni S, Carta G, Murru E, Cordeddu L, Giordano E, Marrosu F, Puligheddu M, Floris G, Asuni GP, Cappai AL, Deriu S, Follesa P. Vagus nerve stimulation reduces body weight and fat mass in rats. PLoS ONE. 2012;7(9):e44813. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0044813.
Baranda JC, Robbrecht D, Sullivan R, Doger B, Santoro A, Barve M, Grob JJ, Bechter O, Vieito M, de Miguel MJ, Schadendorf D, Johnson M, Pouzin C, Cantalloube C, Wang R, Lee J, Chen X, Demers B, Amrate A, Hodi FS. Safety, pharmacokinetics, pharmacodynamics, and antitumor activity of SAR439459, a TGFbeta inhibitor, as monotherapy and in combination with Cemiplimab in patients with advanced solid tumors: findings from a phase 1/1b study. Clin Transl Sci. 2024;17(6):e13854. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/cts.13854.
Bauer TM, Santoro A, Lin CC, Garrido-Laguna I, Joerger M, Greil R, Spreafico A, Yau T, Goebeler ME, Hutter-Kronke ML, Perotti A, Juif PE, Lu D, Barys L, Cremasco V, Pelletier M, Evans H, Fabre C, Doi T. Phase I/Ib, open-label, multicenter, dose-escalation study of the anti-TGF-beta monoclonal antibody, NIS793, in combination with Spartalizumab in adult patients with advanced tumors. J Immunother Cancer. 2023;11(11). https://doiorg.publicaciones.saludcastillayleon.es/10.1136/jitc-2023-007353.
Bogers RP, Bemelmans WJ, Hoogenveen RT, Boshuizen HC, Woodward M, Knekt P, van Dam RM, Hu FB, Visscher TL, Menotti A, Thorpe RJ Jr., Jamrozik K, Calling S, Strand BH, Shipley MJ, Investigators B-CC. Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300 000 persons. Arch Intern Med. 2007;167(16):1720–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/archinte.167.16.1720.
Bohm A, Hoffmann C, Irmler M, Schneeweiss P, Schnauder G, Sailer C, Schmid V, Hudemann J, Machann J, Schick F, Beckers J, de Hrabe M, Staiger H, Fritsche A, Stefan N, Niess AM, Haring HU, Weigert C. TGF-beta contributes to impaired exercise response by suppression of mitochondrial key regulators in skeletal muscle. Diabetes. 2016;65(10):2849–61. https://doiorg.publicaciones.saludcastillayleon.es/10.2337/db15-1723.
Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M, Dani C, Hofman P, Pages G, Pouyssegur J, Le Marchand-Brustel Y, Binetruy B. The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes. 2005;54(2):402–11. https://doiorg.publicaciones.saludcastillayleon.es/10.2337/diabetes.54.2.402.
Burneo JG, Faught E, Knowlton R, Morawetz R, Kuzniecky R. Weight loss associated with vagus nerve stimulation. Neurology. 2002;59(3):463–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1212/wnl.59.3.463.
Campbell MG, Cormier A, Ito S, Seed RI, Bondesson AJ, Lou J, Marks JD, Baron JL, Cheng Y, Nishimura SL. Cryo-EM reveals Integrin-Mediated TGF-beta activation without release from latent TGF-beta. Cell. 2020;180(3):490–e501416. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2019.12.030.
CDC. (2023). Cancers Associated with Overweight and Obesity Make up 40% of Cancers Diagnosed in the United States. Retrieved November 7 from https://www.cdc.gov/cancer/risk-factors/obesity.html
Chen J, Zaidi S, Rao S, Chen JS, Phan L, Farci P, Su X, Shetty K, White J, Zamboni F, Wu X, Rashid A, Pattabiraman N, Mazumder R, Horvath A, Wu RC, Li S, Xiao C, Deng CX, Mishra L. Analysis of genomes and transcriptomes of hepatocellular carcinomas identifies mutations and gene expression changes in the transforming growth Factor-beta pathway. Gastroenterology. 2018;154(1):195–210. https://doiorg.publicaciones.saludcastillayleon.es/10.1053/j.gastro.2017.09.007.
Chen S, Wu H, Wang Z, Jia M, Guo J, Jin J, Li X, Meng D, Lin L, He AR, Zhou P, Zhi X. Loss of SPTBN1 suppresses autophagy via SETD7-mediated YAP methylation in hepatocellular carcinoma initiation and development. Cell Mol Gastroenterol Hepatol. 2022;13(3):949–e973947. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jcmgh.2021.10.012.
Cigaina V. Gastric pacing as therapy for morbid obesity: preliminary results. Obes Surg. 2002;12(Suppl 1):S12–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/BF03342141.
Cigaina VV, Pinato G, Rigo VV, Bevilacqua M, Ferraro F, Ischia S, Saggioro A. Gastric peristalsis control by mono situ electrical stimulation: a preliminary study. Obes Surg. 1996;6(3):247–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1381/096089296765556845.
Cigaina VV, Rigo VV, Greenstein R. Gastric myo-electrical stimulation as therapy for morbid obesity: preliminary results [(abstr 32A)]. Obes Surg. 1999;9:1.
Cioana M, Deng J, Nadarajah A, Hou M, Qiu Y, Chen SSJ, Rivas A, Banfield L, Toor PP, Zhou F, Guven A, Alfaraidi H, Alotaibi A, Thabane L, Samaan MC. The prevalence of obesity among children with type 2 diabetes: A systematic review and Meta-analysis. JAMA Netw Open. 2022;5(12):e2247186. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/jamanetworkopen.2022.47186.
Clifford BL, Sedgeman LR, Williams KJ, Morand P, Cheng A, Jarrett KE, Chan AP, Brearley-Sholto MC, Wahlstrom A, Ashby JW, Barshop W, Wohlschlegel J, Calkin AC, Liu Y, Thorell A, Meikle PJ, Drew BG, Mack JJ, Marschall HU. de Aguiar Vallim, T. Q. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab. 2021;33(8):1671–1684.e1674. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cmet.2021.06.012
Cotero V, Graf J, Miwa H, Hirschstein Z, Qanud K, Huerta TS, Tai N, Ding Y, Jimenez-Cowell K, Tomaio JN, Song W, Devarajan A, Tsaava T, Madhavan R, Wallace K, Loghin E, Morton C, Fan Y, Kao TJ, Puleo C. Stimulation of the hepatoportal nerve plexus with focused ultrasound restores glucose homoeostasis in diabetic mice, rats and swine. Nat Biomed Eng. 2022;6(6):683–705. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41551-022-00870-w.
D’Argent J. Gastric electrical stimulation as therapy of morbid obesity: preliminary results from the French study. Obes Surg. 2002;12:S21–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1381/096089202762552638.
Dai F, Yin J, Chen JDZ. Effects and mechanisms of vagal nerve stimulation on body weight in Diet-Induced obese rats. Obes Surg. 2020;30(3):948–56. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11695-019-04365-7.
de Berrington A, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ, Moore SC, Tobias GS, Anton-Culver H, Freeman LB, Beeson WL, Clipp SL, English DR, Folsom AR, Freedman DM, Giles G, Hakansson N, Henderson KD, Hoffman-Bolton J, Thun MJ. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363(23):2211–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa1000367.
De Luca M, Segato G, Busetto L, Favretti F, Aigner F, Weiss H, de Gheldere C, Gaggiotti G, Himpens J, Limao J, Scheyer M, Toppino M, Zurmeyer EL, Bottani G, Penthaler H. Progress in implantable gastric stimulation: summary of results of the European multi-center study. Obes Surg. 2004;14(Suppl 1):33–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/BF03342136.
Desjardins EM, Steinberg GR. Emerging role of AMPK in brown and beige adipose tissue (BAT): implications for obesity, insulin resistance, and type 2 diabetes. Curr Diab Rep. 2018;18(10):80. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11892-018-1049-6.
Diseases N. I. o. D. a. D. a. K. (2021). Overweight & Obesity Statistics. Retrieved September 1 from www.niddk.nih.gov/health-information/health-statistics/overweight-obesity
Dropmann A, Dediulia T, Breitkopf-Heinlein K, Korhonen H, Janicot M, Weber SN, Thomas M, Piiper A, Bertran E, Fabregat I, Abshagen K, Hess J, Angel P, Coulouarn C, Dooley S, Meindl-Beinker NM. TGF-beta1 and TGF-beta2 abundance in liver diseases of mice and men. Oncotarget. 2016;7(15):19499–518. https://doiorg.publicaciones.saludcastillayleon.es/10.18632/oncotarget.6967.
Eka Widiastuti IA, Arsyad A, Idris I, Patellongi I, Kadriyan H, Buanayuda GW, Sari DP, Rosyidi RM. Exercise adaptations and TGF-beta1 levels in recreational cyclists. Ann Med Surg (Lond). 2021;70:102872. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.amsu.2021.102872.
Elkholey K, Niewiadomska M, Morris L, Whyte S, Houser J, Humphrey MB, Stavrakis S. Transcutaneous vagus nerve stimulation ameliorates the phenotype of heart failure with preserved ejection fraction through its Anti-Inflammatory effects. Circ Heart Fail. 2022;15(8):e009288. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/CIRCHEARTFAILURE.122.009288.
Fadel MG, Fehervari M, Das B, Soleimani-Nouri P, Ashrafian H. Vagal nerve therapy in the management of obesity: A systematic review and Meta-Analysis. Eur Surg Res. 2023;64(4):365–75. https://doiorg.publicaciones.saludcastillayleon.es/10.1159/000533358.
Feng XH, Derynck R. A kinase subdomain of transforming growth factor-beta (TGF-beta) type I receptor determines the TGF-beta intracellular signaling specificity. Embo J. 1997;16(13):3912–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/emboj/16.13.3912.
Fox EA, Powley TL. Longitudinal columnar organization within the dorsal motor nucleus represents separate branches of the abdominal vagus. Brain Res. 1985;341(2):269–82. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/0006-8993(85)91066-2.
Francque SM, Bedossa P, Ratziu V, Anstee QM, Bugianesi E, Sanyal AJ, Loomba R, Harrison SA, Balabanska R, Mateva L, Lanthier N, Alkhouri N, Moreno C, Schattenberg JM, Stefanova-Petrova D, Vonghia L, Rouzier R, Guillaume M, Hodge A, Group NS. A randomized, controlled trial of the Pan-PPAR agonist lanifibranor in NASH. N Engl J Med. 2021;385(17):1547–58. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa2036205.
Frias JP, Davies MJ, Rosenstock J, Perez Manghi FC, Lando F, Bergman L, Liu BK, Cui B, Brown X, K., Investigators S-. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021;385(6):503–15. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa2107519.
Frias JP, Deenadayalan S, Erichsen L, Knop FK, Lingvay I, Macura S, Mathieu C, Pedersen SD, Davies M. Efficacy and safety of co-administered once-weekly Cagrilintide 2.4 mg with once-weekly semaglutide 2.4 mg in type 2 diabetes: a multicentre, randomised, double-blind, active-controlled, phase 2 trial. Lancet. 2023;402(10403):720–30. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0140-6736(23)01163-7.
Gadde KM, Allison DB, Ryan DH, Peterson CA, Troupin B, Schwiers ML, Day WW. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9774):1341–52. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0140-6736(11)60205-5.
Gao X, Chu Y, Wang W, Li W, Zhang W, Cao J, Fu X, Liu H, Chen D, Fan D, Nie Y. Detrimental role of SIX1 in hepatic lipogenesis and fibrosis of non-alcoholic fatty liver disease. Liver Int. 2023a;43(7):1473–85. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/liv.15578.
Gao Y, Zheng B, Xu S, Zhao Z, Liu W, Wang T, Yuan M, Sun X, Tan Y, Xu Q, Wu X. Mitochondrial folate metabolism-mediated alpha-linolenic acid exhaustion masks liver fibrosis resolution. J Biol Chem. 2023b;299(7):104909. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jbc.2023.104909.
Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL. Efficacy of Metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med. 1997;103(6):491–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0002-9343(97)00254-4.
Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017;66(6):789–800. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2017.05.032.
Garrison RJ, Kannel WB, Stokes J 3rd, Castelli WP. Incidence and precursors of hypertension in young adults: the Framingham offspring study. Prev Med. 1987;16(2):235–51. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/0091-7435(87)90087-9.
Garvey WT, Frias JP, Jastreboff AM, le Roux CW, Sattar N, Aizenberg D, Mao H, Zhang S, Ahmad NN, Bunck MC, Benabbad I, Zhang XM, investigators S-. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2023;402(10402):613–26. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0140-6736(23)01200-X.
Gil K, Bugajski A, Kurnik M, Zaraska W, Thor P. Physiological and morphological effects of long-term vagal stimulation in diet induced obesity in rats. J Physiol Pharmacol. 2009;60(Suppl 3):61–6. https://www.ncbi.nlm.nih.gov/pubmed/19996483.
Giordano A, Song CK, Bowers RR, Ehlen JC, Frontini A, Cinti S, Bartness TJ. White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am J Physiol Regul Integr Comp Physiol. 2006;291(5):R1243–1255. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/ajpregu.00679.2005.
Go YY, Ju WM, Lee CM, Chae SW, Song JJ. Different transcutaneous auricular vagus nerve stimulation parameters modulate the Anti-Inflammatory effects on Lipopolysaccharide-Induced acute inflammation in mice. Biomedicines. 2022;10(2). https://doiorg.publicaciones.saludcastillayleon.es/10.3390/biomedicines10020247.
Gomez-Hernandez A, Beneit N, Diaz-Castroverde S, Escribano O. Differential role of adipose tissues in obesity and related metabolic and vascular complications. Int J Endocrinol. 2016;2016(1216783). https://doiorg.publicaciones.saludcastillayleon.es/10.1155/2016/1216783.
Greenway FL, Fujioka K, Plodkowski RA, Mudaliar S, Guttadauria M, Erickson J, Kim DD, Dunayevich E, Group C-IS. Effect of Naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376(9741):595–605. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0140-6736(10)60888-4.
Gustafson D, Rothenberg E, Blennow K, Steen B, Skoog I. An 18-year follow-up of overweight and risk of alzheimer disease. Arch Intern Med. 2003;163(13):1524–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/archinte.163.13.1524.
Hagberg CE, Spalding KL. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol. 2024;25(4):270–89. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41580-023-00680-1.
Halbgebauer D, Roos J, Funcke JB, Neubauer H, Hamilton BS, Simon E, Amri EZ, Debatin KM, Wabitsch M, Fischer-Posovszky P, Tews D. Latent TGFbeta-binding proteins regulate UCP1 expression and function via TGFbeta2. Mol Metab. 2021;53:101336. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molmet.2021.101336.
Hall BE, Wankhade UD, Konkel JE, Cherukuri K, Nagineni CN, Flanders KC, Arany PR, Chen W, Rane SG, Kulkarni AB. Transforming growth factor-beta3 (TGF-beta3) knock-in ameliorates inflammation due to TGF-beta1 deficiency while promoting glucose tolerance. J Biol Chem. 2013;288(44):32074–92. https://doiorg.publicaciones.saludcastillayleon.es/10.1074/jbc.M113.480764.
Harrison SA, Frias JP, Neff G, Abrams GA, Lucas KJ, Sanchez W, Gogia S, Sheikh MY, Behling C, Bedossa P, Shao L, Chan D, Fong E, de Temple B, Shringarpure R, Tillman EJ, Rolph T, Cheng A, Yale K, Group HS. Safety and efficacy of once-weekly efruxifermin versus placebo in non-alcoholic steatohepatitis (HARMONY): a multicentre, randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Gastroenterol Hepatol. 2023a;8(12):1080–93. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S2468-1253(23)00272-8.
Harrison SA, Taub R, Neff GW, Lucas KJ, Labriola D, Moussa SE, Alkhouri N, Bashir MR. Resmetirom for nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled phase 3 trial. Nat Med. 2023b;29(11):2919–28. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41591-023-02603-1.
Harrison SA, Bedossa P, Guy CD, Schattenberg JM, Loomba R, Taub R, Labriola D, Moussa SE, Neff GW, Rinella ME, Anstee QM, Abdelmalek MF, Younossi Z, Baum SJ, Francque S, Charlton MR, Newsome PN, Lanthier N, Schiefke I, Investigators M-N. A phase 3, randomized, controlled trial of Resmetirom in NASH with liver fibrosis. N Engl J Med. 2024;390(6):497–509. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa2309000.
Hendriks D, Brouwers JF, Hamer K, Geurts MH, Luciana L, Massalini S, Lopez-Iglesias C, Peters PJ, Rodriguez-Colman MJ, Chuva de Sousa Lopes, Artegiani S, B., Clevers H. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis. Nat Biotechnol. 2023;41(11):1567–1581. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41587-023-01680-4
Heymsfield SB, Coleman LA, Miller R, Rooks DS, Laurent D, Petricoul O, Praestgaard J, Swan T, Wade T, Perry RG, Goodpaster BH, Roubenoff R. Effect of bimagrumab vs placebo on body fat mass among adults with type 2 diabetes and obesity: A phase 2 randomized clinical trial. JAMA Netw Open. 2021;4(1):e2033457. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/jamanetworkopen.2020.33457.
Hittel DS, Berggren JR, Shearer J, Boyle K, Houmard JA. Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes. 2009;58(1):30–8. https://doiorg.publicaciones.saludcastillayleon.es/10.2337/db08-0943.
Hollander PA, Levy P, Fineman MS, Maggs DG, Shen LZ, Strobel SA, Weyer C, Kolterman OG. Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes: a 1-year randomized controlled trial. Diabetes Care. 2003;26(3):784–90. https://doiorg.publicaciones.saludcastillayleon.es/10.2337/diacare.26.3.784.
Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95(5):2409–15. https://doiorg.publicaciones.saludcastillayleon.es/10.1172/JCI117936.
Hu B, Jin C, Zeng X, Resch JM, Jedrychowski MP, Yang Z, Desai BN, Banks AS, Lowell BB, Mathis D, Spiegelman BM. Gammadelta T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature. 2020;578(7796):610–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41586-020-2028-z.
Huang F, Dong J, Kong J, Wang H, Meng H, Spaeth RB, Camhi S, Liao X, Li X, Zhai X, Li S, Zhu B, Rong P. Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement Altern Med. 2014;14:203. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1472-6882-14-203.
Huerta TS, Devarajan A, Tsaava T, Rishi A, Cotero V, Puleo C, Ashe J, Coleman TR, Chang EH, Tracey KJ, Chavan SS. Targeted peripheral focused ultrasound stimulation attenuates obesity-induced metabolic and inflammatory dysfunctions. Sci Rep. 2021;11(1):5083. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-021-84330-6.
Ikramuddin S, Blackstone RP, Brancatisano A, Toouli J, Shah SN, Wolfe BM, Fujioka K, Maher JW, Swain J, Que FG, Morton JM, Leslie DB, Brancatisano R, Kow L, O’Rourke RW, Deveney C, Takata M, Miller CJ, Knudson MB, Billington CJ. Effect of reversible intermittent intra-abdominal vagal nerve Blockade on morbid obesity: the recharge randomized clinical trial. JAMA. 2014;312(9):915–22. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/jama.2014.10540.
Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K. Smad6 inhibits signalling by the TGF-beta superfamily. Nature. 1997;389(6651):622–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/39355.
Intelligence BH. (2024). Real-World Trends in GLP-1 Treatment Persistence and Prescribing for Weight Management. https://www.bcbs.com/media/pdf/BHI_Issue_Brief_GLP1_Trends.pdf
Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, Alves B, Kiyosue A, Zhang S, Liu B, Bunck MC, Stefanski A, Investigators S-. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022;387(3):205–16. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa2206038.
Jastreboff AM, Kaplan LM, Frias JP, Wu Q, Du Y, Gurbuz S, Coskun T, Haupt A, Milicevic Z, Hartman ML. & Retatrutide Phase 2 Obesity Trial, I. Triple-Hormone-Receptor Agonist Retatrutide for Obesity - A Phase 2 Trial. N Engl J Med. 2023;389(6);514–526. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa2301972
Johannessen H, Revesz D, Kodama Y, Cassie N, Skibicka KP, Barrett P, Dickson S, Holst J, Rehfeld J, van der Plasse G, Adan R, Kulseng B, Ben-Menachem E, Zhao CM, Chen D. Vagal blocking for obesity control: a possible Mechanism-Of-Action. Obes Surg. 2017;27(1):177–85. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11695-016-2278-x.
Kamiya Y, Miyazono K, Miyazawa K. Smad7 inhibits transforming growth factor-beta family type i receptors through two distinct modes of interaction. J Biol Chem. 2010;285(40):30804–13. https://doiorg.publicaciones.saludcastillayleon.es/10.1074/jbc.M110.166140.
Kelley RK, Gane E, Assenat E, Siebler J, Galle PR, Merle P, Hourmand IO, Cleverly A, Zhao Y, Gueorguieva I, Lahn M, Faivre S, Benhadji KA, Giannelli G. A phase 2 study of Galunisertib (TGF-beta1 receptor type I Inhibitor) and Sorafenib in patients with advanced hepatocellular carcinoma. Clin Transl Gastroenterol. 2019;10(7):e00056. https://doiorg.publicaciones.saludcastillayleon.es/10.14309/ctg.0000000000000056.
Keros. (2024). Keros Therapeutics to Develop KER-065 for the Treatment of Obesity. https://ir.kerostx.com/news-releases/news-release-details/keros-therapeutics-develop-ker-065-treatment-obesity/
Kirby JB, Liang L, Chen HJ, Wang Y. Race, place, and obesity: the complex relationships among community Racial/ethnic composition, individual race/ethnicity, and obesity in the united States. Am J Public Health. 2012;102(8):1572–8. https://doiorg.publicaciones.saludcastillayleon.es/10.2105/AJPH.2011.300452.
Kokkorakis M, Boutari C, Hill MA, Kotsis V, Loomba R, Sanyal AJ, Mantzoros CS. Resmetirom, the first approved drug for the management of metabolic dysfunction-associated steatohepatitis: trials, opportunities, and challenges. Metabolism. 2024;154:155835. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.metabol.2024.155835.
Kossen Kea. (2019). IDL-2965: a selective, highly potent, clinical- stage integrin antagonist for the treatment of NASH. https://www.postersessiononline.eu/173580348_eu/congresos/NAFLD2019/aula/-P05_17_NAFLD2019.pdf
Lawan A, Min K, Zhang L, Canfran-Duque A, Jurczak MJ, Camporez JPG, Nie Y, Gavin TP, Shulman GI, Fernandez-Hernando C, Bennett AM. Skeletal Muscle-Specific deletion of MKP-1 reveals a p38 MAPK/JNK/Akt signaling node that regulates Obesity-Induced insulin resistance. Diabetes. 2018;67(4):624–35. https://doiorg.publicaciones.saludcastillayleon.es/10.2337/db17-0826.
Lee J, Cummings BP, Martin E, Sharp JW, Graham JL, Stanhope KL, Havel PJ, Raybould HE. Glucose sensing by gut endocrine cells and activation of the vagal afferent pathway is impaired in a rodent model of type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol. 2012;302(6):R657–666. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/ajpregu.00345.2011.
Lee SG, Chae J, Woo SM, Seo SU, Kim HJ, Kim SY, Schlaepfer DD, Kim IS, Park HS, Kwon TK, Nam JO. TGFBI remodels adipose metabolism by regulating the Notch-1 signaling pathway. Exp Mol Med. 2023;55(3):520–31. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s12276-023-00947-9.
Li N, Yang Y, He K, Zhang F, Zhao L, Zhou W, Yuan J, Liang W, Fang X. Single-Molecule imaging reveals the activation dynamics of intracellular protein Smad3 on cell membrane. Sci Rep. 2016;6:33469. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/srep33469.
Li J, Chen C, Li Y, Matye DJ, Wang Y, Ding WX, Li T. Inhibition of insulin/PI3K/AKT signaling decreases adipose sortilin 1 in mice and 3T3-L1 adipocytes. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2924–33. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbadis.2017.08.012.
Lim HY, Heo J, Peguero JA, Ryoo BY, Decaens T, Barlesi F, Moehler MH, Jehl G, Eggleton SP, Bajars M, Gulley JL. Efficacy and safety of bintrafusp Alfa in 2 phase I expansion cohorts with advanced HCC. Hepatology. 2025;81(1):32–43. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/HEP.0000000000001054.
Lin HM, Lee JH, Yadav H, Kamaraju AK, Liu E, Zhigang D, Vieira A, Kim SJ, Collins H, Matschinsky F, Harlan DM, Roberts AB, Rane SG. Transforming growth factor-beta/Smad3 signaling regulates insulin gene transcription and pancreatic islet beta-cell function. J Biol Chem. 2009;284(18):12246–57. https://doiorg.publicaciones.saludcastillayleon.es/10.1074/jbc.M805379200.
Lin L, Chen S, Wang H, Gao B, Kallakury B, Bhuvaneshwar K, Cahn K, Gusev Y, Wang X, Wu Y, Marshall JL, Zhi X, He AR. SPTBN1 inhibits inflammatory responses and hepatocarcinogenesis via the stabilization of SOCS1 and downregulation of p65 in hepatocellular carcinoma. Theranostics. 2021;11(9):4232–50. https://doiorg.publicaciones.saludcastillayleon.es/10.7150/thno.49819.
Lockhart-Cairns MP, Cain SA, Dajani R, Steer R, Thomson J, Alanazi YF, Kielty CM, Baldock C. Latent TGFbeta complexes are transglutaminase cross-linked to fibrillin to facilitate TGFbeta activation. Matrix Biol. 2022;107:24–39. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.matbio.2022.01.005.
Longenecker JZ, Petrosino JM, Martens CR, Hinger SA, Royer CJ, Dorn LE, Branch DA, Serrano J, Stanford KI, Kyriazis GA, Baskin KK, Accornero F. Cardiac-derived TGF-beta1 confers resistance to diet-induced obesity through the regulation of adipocyte size and function. Mol Metab. 2021;54:101343. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molmet.2021.101343.
Loomba R, Hartman ML, Lawitz EJ, Vuppalanchi R, Boursier J, Bugianesi E, Yoneda M, Behling C, Cummings OW, Tang Y, Brouwers B, Robins DA, Nikooie A, Bunck MC, Haupt A, Sanyal AJ, Investigators S-N. Tirzepatide for metabolic Dysfunction-Associated steatohepatitis with liver fibrosis. N Engl J Med. 2024;391(4):299–310. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa2401943.
Loper H, Leinen M, Bassoff L, Sample J, Romero-Ortega M, Gustafson KJ, Taylor DM, Schiefer MA. Both high fat and high carbohydrate diets impair vagus nerve signaling of satiety. Sci Rep. 2021;11(1):10394. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-021-89465-0.
Lu Y, Liu JJ, Bi XY, Yu XJ, Kong SS, Qin FF, Zhou J, Zang WJ. Pyridostigmine ameliorates cardiac remodeling induced by myocardial infarction via Inhibition of the transforming growth factor-beta1/TGF-beta1-activated kinase pathway. J Cardiovasc Pharmacol. 2014;63(5):412–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/FJC.0000000000000062.
Luan D, Dadpey B, Zaid J, Bridge-Comer PE, DeLuca JH, Xia W, Castle J, Reilly SM. Adipocyte-Secreted IL-6 sensitizes macrophages to IL-4 signaling. Diabetes. 2023;72(3):367–74. https://doiorg.publicaciones.saludcastillayleon.es/10.2337/db22-0444.
Martinez de Morentin PB, Gonzalez-Garcia I, Martins L, Lage R, Fernandez-Mallo D, Martinez-Sanchez N, Ruiz-Pino F, Liu J, Morgan DA, Pinilla L, Gallego R, Saha AK, Kalsbeek A, Fliers E, Bisschop PH, Dieguez C, Nogueiras R, Rahmouni K, Tena-Sempere M, Lopez M. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 2014;20(1):41–53. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cmet.2014.03.031.
Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nrm3434.
Massague J, Sheppard D. TGF-beta signaling in health and disease. Cell. 2023;186(19):4007–37. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2023.07.036.
McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A. 1997;94(23):12457–61. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.94.23.12457.
Mendes NF, Gaspar JM, Lima-Junior JC, Donato J Jr., Velloso LA, Araujo EP. TGF-beta1 down-regulation in the mediobasal hypothalamus attenuates hypothalamic inflammation and protects against diet-induced obesity. Metabolism. 2018;85:171–82. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.metabol.2018.04.005.
Mishra L, Marshall B. Adaptor proteins and ubiquinators in TGF-beta signaling. Cytokine Growth Factor Rev. 2006;17(1–2):75–87. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cytogfr.2005.09.001.
Mitra MS, Lancaster K, Adedeji AO, Palanisamy GS, Dave RA, Zhong F, Holdren MS, Turley SJ, Liang WC, Wu Y, Meng YG, Vernes JM, Schutten MM. A potent Pan-TGFbeta neutralizing monoclonal antibody elicits cardiovascular toxicity in mice and cynomolgus monkeys. Toxicol Sci. 2020;175(1):24–34. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/toxsci/kfaa024.
Modica S, Straub LG, Balaz M, Sun W, Varga L, Stefanicka P, Profant M, Simon E, Neubauer H, Ukropcova B, Ukropec J, Wolfrum C. Bmp4 promotes a brown to White-like adipocyte shift. Cell Rep. 2016;16(8):2243–58. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.celrep.2016.07.048.
Nadauld LD, Garcia S, Natsoulis G, Bell JM, Miotke L, Hopmans ES, Xu H, Pai RK, Palm C, Regan JF, Chen H, Flaherty P, Ootani A, Zhang NR, Ford JM, Kuo CJ, Ji HP. Metastatic tumor evolution and organoid modeling implicate TGFBR2 as a cancer driver in diffuse gastric cancer. Genome Biol. 2014;15(8):428. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13059-014-0428-9.
Naggar I, Nakase K, Lazar J, Salciccioli L, Selesnick I, Stewart M. Vagal control of cardiac electrical activity and wall motion during ventricular fibrillation in large animals. Auton Neurosci. 2014;183:12–22. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.autneu.2014.01.009.
Nunn E, Jaiswal N, Gavin M, Uehara K, Stefkovich M, Drareni K, Calhoun R, Lee M, Holman CD, Baur JA, Seale P, Titchenell PM. Antibody Blockade of activin type II receptors preserves skeletal muscle mass and enhances fat loss during GLP-1 receptor agonism. Mol Metab. 2024;80:101880. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molmet.2024.101880.
Orthey P, Yu D, Van Natta ML, Ramsey FV, Diaz JR, Bennett PA, Iagaru AH, Fragomeni RS, McCallum RW, Sarosiek I, Hasler WL, Farrugia G, Grover M, Koch KL, Nguyen L, Snape WJ, Abell TL, Pasricha PJ, Tonascia J, Consortium NIHG. Intragastric meal distribution during gastric emptying scintigraphy for assessment of fundic accommodation: correlation with symptoms of gastroparesis. J Nucl Med. 2018;59(4):691–7. https://doiorg.publicaciones.saludcastillayleon.es/10.2967/jnumed.117.197053.
Pal A, Barber TM, Van de Bunt M, Rudge SA, Zhang Q, Lachlan KL, Cooper NS, Linden H, Levy JC, Wakelam MJ, Walker L, Karpe F, Gloyn AL. PTEN mutations as a cause of constitutive insulin sensitivity and obesity. N Engl J Med. 2012;367(11):1002–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa1113966.
Pan Q, Ai W, Chen Y, Kim DM, Shen Z, Yang W, Jiang W, Sun Y, Safe S, Guo S. Reciprocal regulation of hepatic TGF-beta1 and Foxo1 controls gluconeogenesis and energy expenditure. Diabetes. 2023;72(9):1193–206. https://doiorg.publicaciones.saludcastillayleon.es/10.2337/db23-0180.
Pardo JV, Sheikh SA, Kuskowski MA, Surerus-Johnson C, Hagen MC, Lee JT, Rittberg BR, Adson DE. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int J Obes (Lond). 2007;31(11):1756–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/sj.ijo.0803666.
Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol. 2012;8(12):743-754. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nrendo.2012.189.
Peng Q, Chen B, Wang H, Zhu Y, Wu J, Luo Y, Zuo G, Luo J, Zhou L, Shi Q, Weng Y, Huang A, He TC, Fan J. Bone morphogenetic protein 4 (BMP4) alleviates hepatic steatosis by increasing hepatic lipid turnover and inhibiting the mTORC1 signaling axis in hepatocytes. Aging. 2019;11(23):11520–40. https://doiorg.publicaciones.saludcastillayleon.es/10.18632/aging.102552.
Penheiter SG, Singh RD, Repellin CE, Wilkes MC, Edens M, Howe PH, Pagano RE, Leof EB. Type II transforming growth factor-beta receptor recycling is dependent upon the clathrin adaptor protein Dab2. Mol Biol Cell. 2010;21(22):4009–19. https://doiorg.publicaciones.saludcastillayleon.es/10.1091/mbc.E09-12-1019.
Petrus P, Mejhert N, Corrales P, Lecoutre S, Li Q, Maldonado E, Kulyte A, Lopez Y, Campbell M, Acosta JR, Laurencikiene J, Douagi I, Gao H, Martinez-Alvarez C, Heden P, Spalding KL, Vidal-Puig A, Medina-Gomez G, Arner P, Ryden M. Transforming growth Factor-beta3 regulates adipocyte number in subcutaneous white adipose tissue. Cell Rep. 2018;25(3):551–e560555. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.celrep.2018.09.069.
Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, Lau DC, le Roux CW, Ortiz V, Jensen R, Wilding CB, Obesity JP, S., Prediabetes NN S. G. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373(1):11–22. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa1411892.
Powley TL. Brain-gut communication: vagovagal reflexes interconnect the two brains. Am J Physiol Gastrointest Liver Physiol. 2021;321(5):G576–87. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/ajpgi.00214.2021.
Puzziferri N, Roshek TB 3rd, Mayo HG, Gallagher R, Belle SH, Livingston EH. Long-term follow-up after bariatric surgery: a systematic review. JAMA. 2014;312(9):934–42. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/jama.2014.10706.
Qian SW, Tang Y, Li X, Liu Y, Zhang YY, Huang HY, Xue RD, Yu HY, Guo L, Gao HD, Liu Y, Sun X, Li YM, Jia WP, Tang QQ. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc Natl Acad Sci U S A. 2013;110(9):E798–807. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.1215236110.
Qin G, Ma J, Huang Q, Yin H, Han J, Li M, Deng Y, Wang B, Hassan W, Shang J. Isoquercetin improves hepatic lipid accumulation by activating AMPK pathway and suppressing TGF-beta signaling on an HFD-Induced nonalcoholic fatty liver disease rat model. Int J Mol Sci. 2018;19(12). https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms19124126.
Quek J, Chan KE, Wong ZY, Tan C, Tan B, Lim WH, Tan DJH, Tang ASP, Tay P, Xiao J, Yong JN, Zeng RW, Chew NWS, Nah B, Kulkarni A, Siddiqui MS, Dan YY, Wong VW, Sanyal AJ, Ng CH. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2023;8(1):20–30. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S2468-1253(22)00317-X.
Rao S, Yang X, Ohshiro K, Zaidi S, Wang Z, Shetty K, Xiang X, Hassan MI, Mohammad T, Latham PS, Nguyen BN, Wong L, Yu H, Al-Abed Y, Mishra B, Vacca M, Guenigault G, Allison MED, Vidal-Puig A, Mishra L. beta2-spectrin (SPTBN1) as a therapeutic target for diet-induced liver disease and preventing cancer development. Sci Transl Med. 2021;13(624):eabk2267. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/scitranslmed.abk2267.
Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol. 2003;23(20):7230–42. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/MCB.23.20.7230-7242.2003.
Rosenstock J, Frias J, Jastreboff AM, Du Y, Lou J, Gurbuz S, Thomas MK, Hartman ML, Haupt A, Milicevic Z, Coskun T. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: a randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. Lancet. 2023;402(10401):529–44. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0140-6736(23)01053-X.
Roth CL, Scimia C, Shoemaker AH, Gottschalk M, Miller J, Yuan G, Malhotra S, Abuzzahab MJ. Setmelanotide for the treatment of acquired hypothalamic obesity: a phase 2, open-label, multicentre trial. Lancet Diabetes Endocrinol. 2024;12(6):380–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S2213-8587(24)00087-1.
Ruiz-Tovar J, Llavero C, Ortega I, Diez M, Zubiaga L, Calpena R. Percutaneous electric neurostimulation of dermatome T7 improves glycemic profile in obese and type 2 diabetic patients. A randomized clinical study. Cir Esp. 2015;93(7):460–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ciresp.2014.06.010.
Sakurai M, Weber P, Wolff G, Wieder A, Szendroedi J, Herzig S, Ustunel E, B. TSC22D4 promotes TGFbeta1-induced activation of hepatic stellate cells. Biochem Biophys Res Commun. 2022;618:46–53. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbrc.2022.05.100.
Saleh M, Mohamed NA, Sehrawat A, Zhang T, Thomas M, Wang Y, Kalsi R, Molitoris J, Prasadan K, Gittes GK. beta-cell Smad2 null mice have improved beta-cell function and are protected from diet-induced hyperglycemia. J Biol Chem. 2021;297(5):101235. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jbc.2021.101235.
Samad F, Yamamoto K, Pandey M, Loskutoff DJ. Elevated expression of transforming growth factor-beta in adipose tissue from obese mice. Mol Med. 1997;3(1):37–48. https://www.ncbi.nlm.nih.gov/pubmed/9132278.
Sanmiguel CP, Conklin JL, Cunneen SA, Barnett P, Phillips EH, Kipnes M, Pilcher J, Soffer EE. Gastric electrical stimulation with the TANTALUS system in obese type 2 diabetes patients: effect on weight and glycemic control. J Diabetes Sci Technol. 2009;3(4):964–70. https://doiorg.publicaciones.saludcastillayleon.es/10.1177/193229680900300445.
Sanyal AJ, Bedossa P, Fraessdorf M, Neff GW, Lawitz E, Bugianesi E, Anstee QM, Hussain SA, Newsome PN, Ratziu V, Hosseini-Tabatabaei A, Schattenberg JM, Noureddin M, Alkhouri N, Younes R, Trial I. A phase 2 randomized trial of survodutide in MASH and fibrosis. N Engl J Med. 2024;391(4):311–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa2401755.
Sarr MG, Billington CJ, Brancatisano R, Brancatisano A, Toouli J, Kow L, Nguyen NT, Blackstone R, Maher JW, Shikora S, Reeds DN, Eagon JC, Wolfe BM, O’Rourke RW, Fujioka K, Takata M, Swain JM, Morton JM, Ikramuddin S, Group ES. The EMPOWER study: randomized, prospective, double-blind, multicenter trial of vagal Blockade to induce weight loss in morbid obesity. Obes Surg. 2012;22(11):1771–82. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11695-012-0751-8.
Savova MS, Vasileva LV, Mladenova SG, Amirova KM, Ferrante C, Orlando G, Wabitsch M, Georgiev MI. Ziziphus Jujuba mill. Leaf extract restrains adipogenesis by targeting PI3K/AKT signaling pathway. Biomed Pharmacother. 2021;141:111934. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biopha.2021.111934.
Seong HA, Manoharan R, Ha H. Smad proteins differentially regulate obesity-induced glucose and lipid abnormalities and inflammation via class-specific control of AMPK-related kinase MPK38/MELK activity. Cell Death Dis. 2018;9(5):471. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41419-018-0489-x.
Shikora SA, Bergenstal R, Bessler M, Brody F, Foster G, Frank A, Gold M, Klein S, Kushner R, Sarwer DB. Implantable gastric stimulation for the treatment of clinically severe obesity: results of the SHAPE trial. Surg Obes Relat Dis. 2009;5(1):31–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.soard.2008.09.012.
Shikora S, Toouli J, Herrera MF, Kulseng B, Zulewski H, Brancatisano R, Kow L, Pantoja JP, Johnsen G, Brancatisano A, Tweden KS, Knudson MB, Billington CJ. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J Obes 2013;2013:245683. https://doiorg.publicaciones.saludcastillayleon.es/10.1155/2013/245683
Shikora SA, Wolfe BM, Apovian CM, Anvari M, Sarwer DB, Gibbons RD, Ikramuddin S, Miller CJ, Knudson MB, Tweden KS, Sarr MG, Billington CJ. Sustained weight loss with vagal nerve Blockade but not with Sham: 18-Month results of the recharge trial. J Obes. 2015;2015(365604). https://doiorg.publicaciones.saludcastillayleon.es/10.1155/2015/365604.
Sinniger V, Pellissier S, Fauvelle F, Trocme C, Hoffmann D, Vercueil L, Cracowski JL, David O, Bonaz B. A 12-month pilot study outcomes of vagus nerve stimulation in Crohn’s disease. Neurogastroenterol Motil. 2020;32(10):e13911. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/nmo.13911.
Sjoberg KA, Sigvardsen CM, Alvarado-Diaz A, Andersen NR, Larance M, Seeley RJ, Schjerling P, Knudsen JG, Katzilieris-Petras G, Clemmensen C, Jorgensen SB, De Bock K, Richter EA. GDF15 increases insulin action in the liver and adipose tissue via a beta-adrenergic receptor-mediated mechanism. Cell Metab. 2023;35(8):1327–e13401325. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cmet.2023.06.016.
Sjostrom L, Rissanen A, Andersen T, Boldrin M, Golay A, Koppeschaar HP, Krempf M. Randomised placebo-controlled trial of Orlistat for weight loss and prevention of weight regain in obese patients. European multicentre Orlistat study group. Lancet. 1998;352(9123):167–72. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0140-6736(97)11509-4.
Slack RJ, Macdonald SJF, Roper JA, Jenkins RG, Hatley RJD. Emerging therapeutic opportunities for integrin inhibitors. Nat Rev Drug Discov. 2022;21(1):60–78. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41573-021-00284-4.
Smith WB, Nguyen D, Clough T, Schofield J, Kagan MR, Kompa J, He Y, Maratos-Flier E, Jamontt J, Vong L, Schwartzkopf CD, Layne JD, Usera AR, O’Donnell CJ, Heldwein KA, Streeper RS, Goldfine AB. A growth-differentiation factor 15 receptor agonist in randomized placebo-controlled trials in healthy or obese persons. J Clin Endocrinol Metab. 2024. https://doiorg.publicaciones.saludcastillayleon.es/10.1210/clinem/dgae550.
Sobocki J, Herman RM, Fraczek M. Occipital C1-C2 neuromodulation decreases body mass and fat stores and modifies activity of the autonomic nervous system in morbidly obese patients–a pilot study. Obes Surg. 2013;23(5):693–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11695-012-0857-z.
Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab. 2017;6(2):174–84. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molmet.2016.12.001.
Son JW, Kim MK, Park YM, Baek KH, Yoo SJ, Song KH, Son HS, Yoon KH, Lee WC, Cha BY, Son HY, Kwon HS. Association of serum bone morphogenetic protein 4 levels with obesity and metabolic syndrome in non-diabetic individuals. Endocr J. 2011;58(1):39–46. https://doiorg.publicaciones.saludcastillayleon.es/10.1507/endocrj.k10e-248.
Stauber AJ, Credille KM, Truex LL, Ehlhardt WJ, Young JK. Nonclinical safety evaluation of a transforming growth factor Β receptor I kinase inhibitor in Fischer 344 rats and beagle dogs. J Clin Toxicol. 2014;4:1–10.
Sun YB, Qu X, Howard V, Dai L, Jiang X, Ren Y, Fu P, Puelles VG, Nikolic-Paterson DJ, Caruana G, Bertram JF, Sleeman MW, Li J. Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance. Kidney Int. 2015;88(2):286–98. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ki.2015.121.
Takahashi H, Alves CRR, Stanford KI, Middelbeek RJW, Nigro P, Ryan RE, Xue R, Sakaguchi M, Lynes MD, So K, Mul JD, Lee MY, Balan E, Pan H, Dreyfuss JM, Hirshman MF, Azhar M, Hannukainen JC, Nuutila P, Goodyear LJ. TGF-beta2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat Metab. 2019;1(2):291–303. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s42255-018-0030-7.
Tan CK, Leuenberger N, Tan MJ, Yan YW, Chen Y, Kambadur R, Wahli W, Tan NS. Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet. Diabetes. 2011;60(2):464–76. https://doiorg.publicaciones.saludcastillayleon.es/10.2337/db10-0801.
Tan CK, Chong HC, Tan EH, Tan NS. Getting ‘smad’ about obesity and diabetes. Nutr Diabetes. 2012;2(3):e29. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nutd.2012.1.
Toyoda S, Shin J, Fukuhara A, Otsuki M, Shimomura I. Transforming growth factor beta1 signaling links extracellular matrix remodeling to intracellular lipogenesis upon physiological feeding events. J Biol Chem. 2022;298(4):101748. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jbc.2022.101748.
Tu WZ, Fu YB, Xie X. RepSox, a small molecule inhibitor of the TGFbeta receptor, induces brown adipogenesis and Browning of white adipocytes. Acta Pharmacol Sin. 2019;40(12):1523–31. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41401-019-0264-2.
Valenzuela PL, Carrera-Bastos P, Castillo-Garcia A, Lieberman DE, Santos-Lozano A, Lucia A. Obesity and the risk of cardiometabolic diseases. Nat Rev Cardiol. 2023;20(7):475–94. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41569-023-00847-5.
Vijgen GH, Bouvy ND, Leenen L, Rijkers K, Cornips E, Majoie M, Brans B, van Lichtenbelt M, W. D. Vagus nerve stimulation increases energy expenditure: relation to brown adipose tissue activity. PLoS ONE. 2013;8(10):e77221. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0077221.
Villarroya J, Cereijo R, Gavalda-Navarro A, Peyrou M, Giralt M, Villarroya F. New insights into the secretory functions of brown adipose tissue. J Endocrinol. 2019;243(2):R19–27. https://doiorg.publicaciones.saludcastillayleon.es/10.1530/JOE-19-0295.
Vonck K, Dedeurwaerdere S, De Groote L, Thadani V, Claeys P, Gossiaux F, Van Roost D, Boon P. Generator replacement in epilepsy patients treated with vagus nerve stimulation. Seizure. 2005;14(2):89–99. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.seizure.2004.11.001.
Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, Johns AL, Miller D, Nones K, Quek K, Quinn MC, Robertson AJ, Fadlullah MZ, Bruxner TJ, Christ AN, Harliwong I, Idrisoglu S, Manning S, Nourse C, Grimmond SM. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nature14169.
Wang Z, Yu L, Wang S, Huang B, Liao K, Saren G, Tan T, Jiang H. Chronic intermittent low-level transcutaneous electrical stimulation of auricular branch of vagus nerve improves left ventricular remodeling in conscious dogs with healed myocardial infarction. Circ Heart Fail. 2014;7(6):1014–21. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/CIRCHEARTFAILURE.114.001564.
Wang P, Loh KH, Wu M, Morgan DA, Schneeberger M, Yu X, Chi J, Kosse C, Kim D, Rahmouni K, Cohen P, Friedman J. A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue. Nature. 2020;583(7818):839–44. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41586-020-2527-y.
Wang H, Wang P, Xu M, Song X, Wu H, Evert M, Calvisi DF, Zeng Y, Chen X. Distinct functions of transforming growth factor-beta signaling in c-MYC driven hepatocellular carcinoma initiation and progression. Cell Death Dis. 2021;12(2):200. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41419-021-03488-z.
Wang HL, Wei B, He HJ, Huang XR, Sheng JY, Chen XC, Wang L, Tan RZ, Li JC, Liu J, Yang SJ, Ma RC, Lan HY. Smad3 deficiency improves islet-based therapy for diabetes and diabetic kidney injury by promoting beta cell proliferation via the E2F3-dependent mechanism. Theranostics. 2022;12(1):379–95. https://doiorg.publicaciones.saludcastillayleon.es/10.7150/thno.67034.
Wang D, Townsend LK, DesOrmeaux GJ, Frangos SM, Batchuluun B, Dumont L, Kuhre RE, Ahmadi E, Hu S, Rebalka IA, Gautam J, Jabile MJT, Pileggi CA, Rehal S, Desjardins EM, Tsakiridis EE, Lally JSV, Juracic ES, Tupling AR, Steinberg GR. GDF15 promotes weight loss by enhancing energy expenditure in muscle. Nature. 2023;619(7968):143–50. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41586-023-06249-4.
Wankhade UD, Lee JH, Dagur PK, Yadav H, Shen M, Chen W, Kulkarni AB, McCoy JP, Finkel T, Cypess AM, Rane SG. TGF-beta receptor 1 regulates progenitors that promote Browning of white fat. Mol Metab. 2018;16:160–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molmet.2018.07.008.
Wara AK, Wang S, Wu C, Fang F, Haemmig S, Weber BN, Aydogan CO, Tesmenitsky Y, Aliakbarian H, Hawse JR, Subramaniam M, Zhao L, Sage PT, Tavakkoli A, Garza A, Lynch L, Banks AS, Feinberg MW. KLF10 deficiency in CD4(+) T cells triggers obesity, insulin resistance, and fatty liver. Cell Rep. 2020;33(13):108550. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.celrep.2020.108550.
Wen X, Zhang B, Wu B, Xiao H, Li Z, Li R, Xu X, Li T. Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022;7(1):298. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41392-022-01149-x.
Wharton S, Blevins T, Connery L, Rosenstock J, Raha S, Liu R, Ma X, Mather KJ, Haupt A, Robins D, Pratt E, Kazda C, Konig M, Investigators G. Daily oral GLP-1 receptor agonist Orforglipron for adults with obesity. N Engl J Med. 2023;389(10):877–88. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa2302392.
WHO. (2018). Obesity and overweight. Retrieved September 1 from https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight
Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, McGowan BM, Rosenstock J, Tran MTD, Wadden TA, Wharton S, Yokote K, Zeuthen N, Kushner RF, Group SS. Once-Weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384(11):989–1002. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa2032183.
Wilding JPH, Batterham RL, Davies M, Van Gaal LF, Kandler K, Konakli K, Lingvay I, McGowan BM, Oral TK, Rosenstock J, Wadden TA, Wharton S, Yokote K, Kushner RF, Group SS. Weight regain and cardiometabolic effects after withdrawal of semaglutide: the STEP 1 trial extension. Diabetes Obes Metab. 2022;24(8):1553–64. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/dom.14725.
Wrana JL, Attisano L, Wieser R, Ventura F, Massague J. Mechanism of activation of the TGF-beta receptor. Nature. 1994;370(6488):341–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/370341a0.
Wueest S, Konrad D. The role of adipocyte-specific IL-6-type cytokine signaling in FFA and leptin release. Adipocyte. 2018;7(3):226–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/21623945.2018.1493901.
Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, Chen JL, Jung DY, Zhang Z, Ko HJ, Kim JK, Veniant MM. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009;58(1):250–9. https://doiorg.publicaciones.saludcastillayleon.es/10.2337/db08-0392.
Xu J, Ma H, Liu Y. Stochastic optical reconstruction microscopy (STORM). Curr Protoc Cytom. 2017;81. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/cpcy.23. 46 11–12 46 27.
Yadav H, Quijano C, Kamaraju AK, Gavrilova O, Malek R, Chen W, Zerfas P, Zhigang D, Wright EC, Stuelten C, Sun P, Lonning S, Skarulis M, Sumner AE, Finkel T, Rane SG. Protection from obesity and diabetes by Blockade of TGF-beta/Smad3 signaling. Cell Metab. 2011;14(1):67–79. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cmet.2011.04.013.
Yan J, Zhang H, Yin Y, Li J, Tang Y, Purkayastha S, Li L, Cai D. Obesity- and aging-induced excess of central transforming growth factor-beta potentiates diabetic development via an RNA stress response. Nat Med. 2014;20(9):1001–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nm.3616.
Yang L, Roh YS, Song J, Zhang B, Liu C, Loomba R, Seki E. Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology. 2014;59(2):483–95. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/hep.26698.
Yang L, Chang CC, Sun Z, Madsen D, Zhu H, Padkjaer SB, Wu X, Huang T, Hultman K, Paulsen SJ, Wang J, Bugge A, Frantzen JB, Norgaard P, Jeppesen JF, Yang Z, Secher A, Chen H, Li X, Jorgensen SB. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017;23(10):1158–66. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nm.4394.
Yang X, Bhowmick K, Rao S, Xiang X, Ohshiro K, Amdur RL, Hassan MI, Mohammad T, Crandall K, Cifani P, Shetty K, Lyons SK, Merrill JR, Vegesna AK, John S, Latham PS, Crawford JM, Mishra B, Dasarathy S, Mishra L. Aldehydes alter TGF-beta signaling and induce obesity and cancer. Cell Rep. 2024;43(9):114676. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.celrep.2024.114676.
Yao G, Kang L, Li J, Long Y, Wei H, Ferreira CA, Jeffery JJ, Lin Y, Cai W, Wang X. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat Commun. 2018;9(1):5349. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-018-07764-z.
Yi CX, la Fleur SE, Fliers E, Kalsbeek A. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta. 2010;1802(4):416–31. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbadis.2010.01.006.
Zaragosi LE, Wdziekonski B, Villageois P, Keophiphath M, Maumus M, Tchkonia T, Bourlier V, Mohsen-Kanson T, Ladoux A, Elabd C, Scheideler M, Trajanoski Z, Takashima Y, Amri EZ, Lacasa D, Sengenes C, Ailhaud G, Clement K, Bouloumie A, Dani C. Activin a plays a critical role in proliferation and differentiation of human adipose progenitors. Diabetes. 2010;59(10):2513–21. https://doiorg.publicaciones.saludcastillayleon.es/10.2337/db10-0013.
Zhao J, Hu L, Gui W, Xiao L, Wang W, Xia J, Fan H, Li Z, Zhu Q, Hou X, Chu H, Seki E, Yang L. Hepatocyte TGF-beta signaling inhibiting WAT Browning to promote NAFLD and obesity is associated with Let-7b-5p. Hepatol Commun. 2022;6(6):1301–21. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/hep4.1892.
Zhao M, Okunishi K, Bu Y, Kikuchi O, Wang H, Kitamura T, Izumi T. Targeting activin receptor-like kinase 7 ameliorates adiposity and associated metabolic disorders. JCI Insight. 2023;8(4). https://doiorg.publicaciones.saludcastillayleon.es/10.1172/jci.insight.161229.
Zhou M, Learned RM, Rossi SJ, DePaoli AM, Tian H, Ling L. Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice. Hepatol Commun. 2017;1(10):1024–42. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/hep4.1108.
Zhou M, Aziz M, Ochani M, Wang P. Correction of immunosuppression in aged septic rats by human Ghrelin and growth hormone through the vagus nerve-dependent Inhibition of TGF-beta production. Mol Med. 2020;26(1):71. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s10020-020-00195-x.
Acknowledgements
NA.
Funding
This work was supported by NIH grants R01AA023146 (LM), R01CA236591 (LM).
Author information
Authors and Affiliations
Contributions
L.M. contributed to the topic formulation. S.J., K.B., A.P., H.H., X.Y., and L.M. contributed to the design of the review, sampling of relevant studies, information collection and drafting the article. X.Y. and L.M. revised and edited the article critically for presentation, interpretation, discussion, and implication for future research. All authors reviewed the manuscript.
Corresponding authors
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
All participants were informed and gave written consent.
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
John, S., Bhowmick, K., Park, A. et al. Recent advances in targeting obesity, with a focus on TGF-β signaling and vagus nerve innervation. Bioelectron Med 11, 10 (2025). https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s42234-025-00172-x
Received:
Accepted:
Published:
DOI: https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s42234-025-00172-x