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Abstract

Background: Multiscale entropy (MSE) has become increasingly common as a quantitative tool for analysis of
physiological signals. The MSE computation involves first decomposing a signal into multiple sub-signal ‘scales’
using a coarse-graining algorithm.

Methods: The coarse-graining algorithm averages adjacent values in a time series to produce a coarser scale time
series. The Haar wavelet transform convolutes a time series with a scaled square wave function to produce an
approximation which is equivalent to averaging points.

Results: Coarse-graining is mathematically identical to the Haar wavelet transform approximations. Thus, multiscale
entropy is entropy computed on sub-signals derived from approximations of the Haar wavelet transform. By
describing coarse-graining algorithms properly as Haar wavelet transforms, the meaning of ‘scales’ as wavelet
approximations becomes transparent. The computed value of entropy is different with different wavelet basis
functions, suggesting further research is needed to determine optimal methods for computing multiscale entropy.

Conclusion: Coarse-graining is mathematically identical to Haar wavelet approximations at power-of-two scales.
Referring to coarse-graining as a Haar wavelet transform motivates research into the optimal approach to signal
decomposition for entropy analysis.

Keywords: Haar, Wavelet, Multiscale, Coarse-graining, Multiscale entropy, Fourier transform

Background
Multiscale entropy (MSE) was first introduced as a use-
ful quantitative property of biological signals (Costa
et al., 2002), initially demonstrated as a biomarker to dis-
tinguish diseased hearts from healthy or aging hearts
(Costa et al., 2005; Norris et al., 2008; Costa et al., 2008).
Subsequently, MSE analysis has been used to analyze
many different physiological time series to find bio-
markers for many conditions, including postural control
(Busa & van Emmerik, 2016), epilepsy (Aung & Wongsa-
wat, 2021; Sathyanarayana et al., 2021), autism (Bosl
et al., 2018), schizophrenia (Hasey & Kiang, 2013), Alz-
heimer’s Disease (Horvath et al., 2018), as well as many

applications outside of physiology (Humeau-Heurtier,
2020). MSE has found increasing usefulness as a method
for analyzing neurophysiological signals (Bosl et al.,
2018; Gurau et al., 2017; Sathyanarayana et al., 2020).
The method proposed to compute MSE involved two
steps. First, the signal is decomposed into sub-signals
using an averaging process called coarse-graining, then
the entropy of each sub-signal is computed (Costa et al.,
2002).
Nearly all publications involving multiscale entropy

use the coarse-graining procedure as the first step in de-
composing a physiological time series into smaller scales.
The procedure is illustrated in Fig. 1. Historically, ana-
lysis of physiological time signals has focused on signal
power in multiple, non-overlapping frequency bands or
across the ‘spectrum’ of frequencies. Many methods for
spectral power analysis are available, including Fourier,
wavelet, and Hilbert transforms (Bruns, 2004) and more
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recent variations on Fourier methods such as multi-
tapers that improve the time-frequency resolution of the
decomposition (van Vugt et al., 2007; Babadi & Brown,
2014). If power and entropy are each considered proper-
ties of a signal or time series, the question of the rela-
tionship between the scales derived from the coarse-
graining algorithm and traditional frequency bands
arises.
Filtering is an almost ubiquitous step in the prepro-

cessing of electroencephalography EEG and magnetoen-
cephalography (MEG) data. It lies in the nature of this
process itself that filtering might seriously change the
appearance of the signals and thereby affect the results
obtained” (Widmann et al., 2015). An ideal filter for
digital signals does not exist. All filters affect signals
(Cover & Thomas, 2006). Since multiscale entropy ana-
lysis first applies a filtering step, by default using coarse-
graining, it is important to understand how coarse-
graining affects the signal to be analyzed and, in particu-
lar, what affect it may have on the signal entropy. By
demonstrating that coarse-graining is identical to the
Haar wavelet transform, the well-developed mathematics
of wavelet filtering can be applied to this process.
The goal of this brief report is to demonstrate that the

coarse-graining procedure is mathematically identical to
the ‘approximations’ that are generated by the Haar
wavelet transform. This enables future research on mul-
tiscale nonlinear signal analysis to consider signal de-
composition using all of the various methods commonly
used for spectral power analysis in a rigorous mathemat-
ical context. Furthermore, the overlapping frequency
bands derived by coarse-graining or wavelet approxima-
tions, which successively subtract higher frequencies, dif-
fer from wavelet details, which produce non-overlapping

distinct frequency bands that are similar to the discrete
bands used for power analysis. If entropy is computed
on distinct frequency bands, then multiscale entropy
could be called spectral entropy, to be compared to
spectral power. Whether or not this is optimal is an
open research question. Other nonlinear signal proper-
ties may also be compared with power and entropy
across the same sub-signals or frequency bands.

Methods
The coarse-graining procedure is a digital low-pass filter.
Each successive scale in the coarse-graining procedure
subtracts higher frequency components, leaving only the
lower frequency components. The original and most
common approach is to average sets of values to obtain
scales: average every two points to create scale 2 subse-
ries, average every 3 points to create scale 3 subseries,
etc. (Fig. 1, upper level). A faster approach that gives
only power-of-two scales is to repeatedly average every
pair of points in the previous sub-signal (Fig. 1, lower
level). Though not commonly done, this is obvious from
simple arithmetic. We note this because power-of-two
scaling is commonly used for computing wavelet levels.
The power-of-two scales of coarse-graining, however
computed, are mathematically identical to Haar wavelet
transform approximations. We also note that wavelets
are computed by convoluting scaled versions of the
mother wavelet with the original signal. For computa-
tional efficiency, the mother wavelet is typically scaled
by powers-of-two. However, this is not strictly necessary.
If a Haar wavelet is scaled by successive integer factors,
2, 3, 4, and so on, and convoluted with a signal, then the
resulting sub-signals are identical to the scales derived
by coarse-graining. Both Haar wavelets and coarse-

Fig. 1 The coarse-graining procedure uses a simple averaging process to derive successive sub-signal scales (upper box). The same result can be
obtained for power-of-two scales by averaging pairs of points from the preceding scale subsignal, as illustrated in the lower box
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graining can be applied to achieve identical integer
scales or power-of-two scales.
Quantitative analysis of physiological signals such as

electroencephalograms (qEEG) typically involves decom-
position of the signal from each sensor into non-
overlapping frequency bands using some spectral de-
composition method, from which the average power on
each sub-signal is computed.
Many approaches, including Fourier, Wavelet, and Hil-

bert transforms, Empirical Mode Decomposition, multi-
taper methods (used together with Fourier transforms)
and others. All of these methods seek to decompose a
signal into sub-signals that represent the signal at differ-
ent frequency compositions or different scales. Formally,
spectral analysis refers to the mathematical process of
representing a function or signal as a sum of simpler
functions, called basis functions, that meet certain math-
ematical requirements. A complete set of basis functions,
called a basis set, satisfies mathematical constraints that
make the set well-suited for representing other, more
complex functions. For example, a set of sinusoidal func-
tions with integer wave numbers satisfy the require-
ments for a basis set and are commonly used for EEG
power analysis. For any set of basis functions, { ϕn, n = 0,
±1, ±2, ±3, …}, we can write

f xð Þ ¼
X∞

n¼−∞
anϕnð Þ ð1Þ

If the basis functions are sinusoids, then (1) represents
a Fourier series for the function f(x). The coefficients,
an, are the amplitudes of each component function. The
square of the amplitude of a sine wave is the power.
Hence, the power of a specified frequency band can be
conceptually found by summing the square of the coeffi-
cients of each component sine wave, although in prac-
tice more efficient algorithms are generally used.
A signal can be decomposed into multiple sub-signals,

each representing a different resolution or frequency
composition of the original signal, using many different
mathematical approaches. For example, Fourier, Wave-
let, and Hilbert transforms have been shown to be
equivalent under certain conditions, though each has ad-
vantages (Bruns, 2004). A great deal of research has been
devoted to finding optimal methods for spectral analysis
for specific signals and goals.
Power is only one property that can be computed to

characterize a signal. One of many signal properties is
the sample entropy that can be computed for any time
series (Humeau-Heurtier, 2020; Richman & Moorman,
2000). Just as spectral power refers to the average power
in a specified frequency band, spectral entropy is an ap-
propriate term for the entropy computed on each fre-
quency band. The relationship between scales derived

from coarse-graining and frequency bands can be made
explicit.
Similar to Fourier decomposition, wavelet transforms

decompose a signal using a different set of basis func-
tions. Unlike sine waves, that are infinite, wavelet basis
functions are nonzero only on a finite interval, termed
‘compact support’. The Haar wavelet was the first wave-
let basis function used for signal processing. In the mid-
1980s, wavelet transform analysis developed rapidly
when it was found to be well-suited for seismic signal
analysis (Goupillaud et al., 1984). Many different wavelet
basis functions have been developed since then. An
evaluation of dozens of wavelet families, each with as
many as a hundred or more subtypes, found that the
Daubechies 44 (db44) was most similar mother wavelet
function across a variety of biological signals and
potentially optimal (Rafiee et al., 2011). A comparison
of wavelet bases for detecting EEG changes to multi-
scale entropy for a working memory task found that
the sym9 wavelet gave the best results on a cross-
correlation analysis (Al-Qazzaz et al., 2015). The
Morlet wavelet transform is in fact identical to short-
time Fourier transform (STFT) when using a Gaussian
window (Bruns, 2004).

Results and discussion
All wavelet transforms decompose a time series into
pairs of subseries, each of which is half the length of the
original. Mathematically this is accomplished by convo-
lution, whereby the basis function is multiplied by the
original signal while sliding along the signal. For each
successive step, the basis function is scaled to be larger,
thus detecting signal variation on different scales. One
subseries is a running average or trend, called the ‘ap-
proximation,’ while the other subseries tracks the differ-
ences between the original points and the averages,
called the ‘details.’ The approximation is a smoothed
version of the signal, while the detail signal contains the
finer variation that was lost in the previous approxima-
tion step. One step of a wavelet decomposition splits the
signal in half by frequencies, where the approximations
contain the low-frequency components and the details
contain high-frequency components. An example of this
process is shown in Fig. 3.
The original signal in Fig. 2 is extracted from a single

channel of an EEG recording and has a sampling rate of
256 Hz. It will contain frequency components up to 128
Hz, according to the Nyquist criterion, which states that
a time series can only represent frequencies of up to
one-half of the sampling rate. The first level of wavelet
approximation contains frequency components up to 64
Hz, while the respective details contain all frequency
components from 64 to 128 Hz. The process continues
by successively splitting the previous approximation,
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producing respective approximations and details for
each level.
We note here that traditional power analysis computes

the power of non-overlapping frequency bands. For ex-
ample, electroencephalography (EEG) analysis computes
the average power on five frequency bands: delta (0–4
Hz), theta (4–7 Hz), alpha (7–13 Hz), beta (13–30 Hz),
and gamma (30–60 Hz). These are approximately
equivalent to wavelet details (Bosl et al., 2018; Sathya-
narayana et al., 2020). In contrast, coarse-graining, or
Haar wavelet approximations, define overlapping bands
where the higher frequencies are successively removed.
Figure 3 illustrates the equivalence of coarse-grain scales
and wavelet approximations, and the approximate rela-
tionship between wavelet details and traditional non-
overlapping frequency bands.

The approximations produced by a Haar wavelet
transform are identical to the power-of-two scales of the
coarse-graining procedure. This relationship is proven
mathematically by noting that the averaging filter for the
Haar wavelet has a width equal to 2n points on the time
series, where n is the wavelet level. The coefficient for
the wavelet as it slides along the length of the signal is
equal to the mean of the time series values contained in
its length. Each point in level A1 is found by successively
averaging 2 points as the averaging filter is moved along
the time series from right to left. For level 2 (or scale 4
in the coarse-graining procedure, since scale = 2level), the
wavelet averaging filter is 2n points wide, thus averaging
4 points at a time, and so on. Note that the coarse-
graining scales are related to wavelet levels (A0, A1, etc)
by powers of two: the scale is derived by raising 2 to the

Fig. 2 An example of a segment of an EEG time series is shown. Scales obtained by coarse-graining are shown in column 1. Haar wavelet
transform approximations (column 2) and details (column 3) are also shown for equivalent levels. The horizontal axes represent points in the time
series, the vertical axis is the magnitude of the field. Haar wavelet approximation levels are identical to power-of-two scales obtained by coarse-
graining. The coarse-graining procedure does not have an equivalent to the wavelet details
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power of the wavelet level. Thus, the original signal is
wavelet level 0 (A0) or scale 1 = 20. Wavelet level 3 (A3)
is scale 8 = 23 in the coarse-graining terminology.
Suppose for any given time series there are N values.

Mathematically, the values for the next level of approxi-
mation in the wavelet transform are given by:

am ¼ x2m−1 þ x2m
2

; m ¼ 1 to N=2: ð2Þ

Thus, a1 = (x1 + x2)/2, a2 = (x3 + x4)/2, a1 = (x5 + x6)/2,
and so on, which is identical to the power-of-two scales
in the coarse-graining procedure. The detail coefficients
are given by:

dm ¼ x2m−1−x2m
2

ð3Þ

The reconstruction process whereby successively lower
levels are reconstructed is accomplished by:

x2m−1 ¼ am þ dm

2
and x2m ¼ am−dm

2
: ð4Þ

We note that wavelet coefficients are typically multi-
plied by

ffiffiffi
2

p
to preserve the energy or power of the sig-

nal since at each step the signal is half as many points

long. Further information about wavelet algorithms can
be found in wavelet texts (Addison, 2005; Walker, 2008).
While power is preserved with different wavelet basis

functions, the effect of different wavelet basis functions
on entropy or other nonlinear measures using different
wavelet basis functions has not yet been explored. In
Fig. 4 multiscale entropy curves were computed for EEG
and polysomnography signals using haar (equivalent to
coarse-graining), db4 (Rafiee et al., 2011), and sym9 (Al-
Qazzaz et al., 2015) wavelets. While the general shape of
the curves is relatively the same, the values are clearly
different, diverging especially in the higher scales, or
lower frequency ranges. This suggests that the optimal
approach to computing entropy on multiple scales re-
mains to be fully explored.
In summary, the Haar wavelet produces subseries by

averaging 2 points at a time, then 4 points at a time,
then 8 points at a time, and so on. The coarse-graining
procedure typically averages 2, 3, 4, 5, … points at a
time. Thus, for powers of 2, the coarse-graining proced-
ure is identical to the approximations of the Haar wave-
let transform. The coarse-graining procedure does not
produce any subseries equivalent to the detail subseries
of a wavelet transform. The detail subseries are

Fig. 3 The relationship between coarse-grain scales and wavelet approximation levels is illustrated. Also shown are approximate frequency band
labels associated with the wavelet detail levels Fig. 4. Sample entropy was computed using three different wavelets to decompose signals into
wavelet approximations: Haar (equivalent to coarse-graining), db4, and sym9. The latter two have been cited previously as potentially optimal for
analyzing biological signals. The data used for these plots were downloaded from the public PhysioNet database (www.physionet.org)
(Goldberger et al., 2000). The exact files are named in each figure box. Chb files are from the CHB-MIT Scalp EEG Database, representing pediatric
subjects with intractable seizures (Shoeb, 2009). The rbd file is from the CAP Sleep Database (Terzano et al., 2001). The file 0001.dat is an ECG
signal from the Autonomic Aging folder in the PhysioNet Database (Schumann & Bar, 2021)
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equivalent to the non-overlapping frequency bands pro-
duced by a typical Fourier decomposition using power-
of-two multiples of the sampling rate.

Conclusions
The relationship between scales, as used in the multi-
scale entropy literature, and typical frequency bands that
are ubiquitous in quantitative EEG analysis is now expli-
cit. The scales derived from coarse-graining are math-
ematically identical to the approximation levels derived
from the Haar wavelet transform. The details produced
by a wavelet transform are non-overlapping frequency
bands, similar to traditional frequency bands used for
EEG analysis. The Haar wavelet is only one of many
wavelet basis functions that may be used for signal de-
composition. A great deal of research has been done to
explore optimal frequency decomposition methods for
physiological signals. In future studies that use multi-
scale entropy, referring to the Haar wavelet transform
approximation rather than ‘coarse-graining’ will place
this decomposition in a rigorous context and allow com-
parison with alternative basis functions or with trad-
itional spectral decomposition methods. Thus far, by
default, multiscale entropy analysis has adopted the Haar

wavelet decomposition. Whether or not this is optimal
for multi-resolution entropy or nonlinear analysis, and
why this should be different from traditional spectral de-
composition used for power analysis, has yet to be
explored.
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