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Neural reflex control of vascular

inflammation

A. S. Caravaca1*, M. Centa1,2, A. L. Gallina1, L. Tarnawski1 and P. S. Olofsson1,2
Abstract

Atherosclerosis is a multifactorial chronic inflammatory disease that underlies myocardial infarction and stroke.
Efficacious treatment for hyperlipidemia and hypertension has significantly reduced morbidity and mortality in
cardiovascular disease. However, atherosclerosis still confers a considerable risk of adverse cardiovascular events. In
the current mechanistic understanding of the pathogenesis of atherosclerosis, inflammation is pivotal both in
disease development and progression. Recent clinical data provided support for this notion and treatment
targeting inflammation is currently being explored. Interestingly, neural reflexes regulate cytokine production and
inflammation. Hence, new technology utilizing implantable devices to deliver electrical impulses to activate neural
circuits are currently being investigated in treatment of inflammation. Hopefully, it may become possible to target
vascular inflammation in cardiovascular disease using bioelectronic medicine. In this review, we discuss neural
control of inflammation and the potential implications of new therapeutic strategies to treat cardiovascular disease.
Introduction
The immune system responds to microbes and tissue in-
jury and strives to maintain homeostasis by eradicating
threats of infection and promoting tissue repair. Invasion
and injury are sensed by several mechanisms. A range of
immune cells and sensory neurons express receptors for
pathogen associated molecular patterns (PAMP), dam-
age associated molecular patterns (DAMP), cytokines,
chemokines, irritants, and other infection- and
inflammation-associated molecules (Chiu et al. 2012; Ri-
vera et al. 2016). Accordingly, both immune cells and
neurons respond to infection and injury to coordinate
the inflammatory response and defense from pathogens
(Andersson and Tracey 2012; Goehler et al. 2000; Chiu
et al. 2013; Baral et al. 2018; Pinho-Ribeiro et al. 2016;
Blake et al. 2018). The vasculature plays an important
role in anti-microbial defense and tissue healing
(Kozarov 2012). Vascular inflammation is also a key fac-
tor in the development of atherosclerosis, and blocking
pro-inflammatory cytokines may reduce aspects of car-
diovascular disease (Hansson and Libby 2006; Ridker
et al. 2017a). The interplay between the nervous and
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immune systems in the pathogenesis of cardiovascular
disease is not well understood.

Inflammation in atherosclerosis
Atherosclerosis is a major underlying cause of cardio-
vascular disease, the main cause of death worldwide
(Herrington et al. 2016). It is defined by the forma-
tion and growth of atheromatous plaques in the arter-
ial walls of medium- and large-size arteries
characterized by local lipid accumulation, cell death,
and fibrosis (Hansson and Libby 2006). Initially, lipid-
laden macrophages accumulate beneath the endothe-
lium and form fatty streaks. This early disease stage
is asymptomatic, and progresses slowly with local
buildup of inflammatory cells and smooth muscle
cells in the intimal layer of arteries. This low-grade
inflammation eventually develops into an exocentric
thickening in the arterial wall into an atheromatous
plaque. The plaque commonly contains a lipid-rich
necrotic core, immune cells and cellular debris. It is
surrounded by a fibrous cap formed primarily by
smooth muscle cells and collagen. Plaques prone to
rupture are considered “vulnerable” (Finn et al. 2010).
As the disease progresses, local inflammation in the
lesion produces radicals, proteases and pro-
inflammatory mediators, which may reduce the local
integrity of the fibrous cap and increase the risk of
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plaque rupture, atherothrombosis, and clinical symp-
toms (Hansson 2005; Tabas 2010; Kojima et al. 2017;
Kojima et al. 2019) (Fig. 1).
Vulnerable plaque disruption has also been linked to

sheer stress. Non-laminar flow and disturbed shear
stress can result in pro-inflammatory gene expression in
the vascular wall. (Cunningham and Gotlieb 2005; Chiu
and Chien 2011; Cybulsky and Marsden 2014). Areas of
the vascular tree that are constantly exposed to turbu-
lent blood flow, such as arterial branching sites, are
more susceptible to atherosclerotic plaque formation.
Low shear stress promotes endothelial expression of ad-
hesion molecules and recruitment of monocytes (Sene-
viratne et al. 2013). Together, unfavorable bio-
mechanical forces, lipid accumulation, and inflammatory
cell infiltration promote plaque formation and develop-
ment of plaque vulnerability.
Clearly, the molecular mechanisms that underlie develop-

ment and progression of atherosclerotic plaques are com-
plex (Stemme et al. 1995; Hermansson et al. 2010;
Davignon and Ganz 2004). In the following sections we dis-
cuss potential strategies to target unresolved inflammation
in atherosclerosis, including potential applications of bio-
electronic medicine in cardiovascular disease.

Current treatment strategies for inflammation in
atherosclerosis
There has been some success in recent decades in treat-
ment of atherosclerotic cardiovascular disease, with
many patients being helped by lipid-lowering therapy
and anti-thrombotic drugs (Shapiro and Fazio 2016; Nis-
sen et al. 2005). However, disease events within the
treated populations continue to occur, perhaps because
Fig. 1 Neural control of vascular inflammation. Neural circuits regulate infla
acetylcholine (ACh) acts through the alpha 7 nicotinic acetylcholine recept
cytokines such as TNF. Suggested neuro-immune cross talk in atherosclero
interact with other layers of the vascular wall. In the early stages of atheros
arteries progresses slowly. c As atherosclerosis progresses, the inflamed pla
vulnerability and the risk of rupture
some patients are still unable to reach desirable blood
levels of low-density lipoprotein cholesterol drugs (Libby
2005; Shapiro et al. 2016; Fava and Montagnana 2018;
Ikonomidis and Andreotti 1999).
An emerging potential treatment strategy is targeting

inflammation. The recent Canakinumab Anti-
Inflammatory Thrombosis Outcomes Study (CANTOS),
a randomized trial of blocking interleukin-1β (IL-1β) in
cardiovascular disease using canakinumab, showed a sig-
nificant risk-reduction for adverse cardiovascular events
in treated at-risk patients (Ridker et al. 2017b). This trial
translates the evidence from experimental studies on the
pathogenetic role of inflammation in atherosclerosis
(Gisterå and Hansson 2017; Söderström et al. 2018) to
the clinic and supports the notion that reducing arterial
inflammation in human atherosclerotic cardiovascular
disease is beneficial for outcome. Interestingly, in experi-
mental radiation-induced arterial damage, treatment
with anti-IL-1β antibodies, i.e. anakinra, significantly
reduced inflammation (Christersdottir et al. 2019). These
findings suggest that anti-cytokine therapy, e.g. inhib-
ition of IL-1β, may be useful for prevention and treat-
ment of vascular inflammation and atherosclerosis.
However, anti-cytokine drugs are currently expensive
and commonly require administration by injection
(Goehler et al. 2000).

Neural control of inflammation in atherosclerosis
Research over more than two decades has shown that
inflammation is regulated by neural reflexes (Tracey
2002; Olofsson et al. 2012; Pavlov et al. 2018). Infection,
inflammation, and specific cytokines elicit signals in
sensory nerves (Chiu et al. 2013; Niijima 1996; Watkins
mmation and cytokine production. a In the inflammatory reflex,
or subunit (α7nAChR) on macrophages to suppress pro-inflammatory
sis: b The adventitia is innervated and contains immune cells that may
clerosis, local recruitment of inflammatory cells in the intimal layer of
que eventually develops a necrotic core which increases plaque
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et al. 1995; Caravaca et al. 2017a; Zanos et al. 2018;
Pinho-Ribeiro et al. 2018), and cytokine release, immune
cell activity, antibody production, and lymph flow are
regulated by efferent neural signals (Borovikova et al.
2000; Rosas-Ballina et al. 2011; Mina-Osorio et al. 2012;
Hanes et al. 2016; Tynan et al. 2019). These processes
subject to neural control are important in the pathogen-
esis of atherosclerosis, and consequently present oppor-
tunities for further exploration of potential clinical
targets (Gisterå and Hansson 2017; Swirski et al. 2009;
Hermansson et al. 2011; Centa et al. 2019) (Fig. 1). The
adventitia is innervated and contains immune cells that
can interact with other layers of the vascular wall (Sten-
mark et al. 2013). This anatomical organization suggest
that nerves, resident immune cells, and other compo-
nents involved in vascular inflammation and atheroscler-
osis may interact. It remains to be investigated whether
this potential interaction regulates vascular
inflammation and atherosclerosis development.
The inflammatory reflex is a neural circuit that regu-

lates inflammation. It has been extensively studied and
mechanistically mapped to some degree (Pavlov et al.
2019; Tarnawski et al. 2018). Major components of this
neuro-immune circuit include the vagus nerve, the
splenic nerve, choline acetyltransferase expressing T-
cells (TChAT), and the α7 nicotinic acetylcholine receptor
subunit (α7nAChR) (Rosas-Ballina et al. 2011; Olofsson
et al. 2016; Cox et al. 2019; Guzik et al. 2007; Wang
et al. 2002; Huston et al. 2006; Rosas-Ballina et al. 2008).
α7nAChR is expressed by many immune cells, including
macrophages, and agonists for the α7nAChR attenuate
biosynthesis and release of several pro-inflammatory
cytokines, including TNF (Wang et al. 2002).
Interestingly, the α7nAChR is reportedly expressed in hu-

man atherosclerotic lesions, and ablation of hematopoietic
α7nAChR in mice increased aortic atherosclerosis (Johans-
son et al. 2014). In addition, α7nAChR−/− atherosclerosis-
prone ApoE−/− mice had increased serum CRP and IL-6, as
well as increased macrophage cholesterol mass from mouse
peritoneal macrophages, compared to α7nAChR−/− x
ApoEwt/wt mice (Wilund et al. 2009). Furthermore, admin-
istration of GTS-21, a selective α7nAChR agonist, reduced
atherosclerotic lesions and plaque size as observed from the
aorta of ApoE−/− mice (Al-Sharea et al. 2017). These obser-
vations suggest that cholinergic signals to α7nAChR in ath-
erosclerosis can attenuate plaque inflammation and
atherosclerosis progression. This is in line with the notion
that activation of α7nAChR reduces inflammation in a wide
range of animal models of different inflammatory diseases
(Steinberg et al. 2016a).
The prototypical agonist for α7nAChR is acetylcholine

(ACh). ACh is also the key neurotransmitter of the vagus
nerve and biosynthesized by ChAT. Importantly, ACh
can also be released to the extracellular space by TChAT,
which relay neural signals to α7nAChR-expressing mac-
rophages in spleen and attenuates production of pro-
inflammatory cytokines (Olofsson et al. 2012; Rosas-
Ballina et al. 2008). Of note, administration of galanta-
mine, an acetylcholinesterase inhibitor, reduced levels of
pro-inflammatory cytokines and improved insulin sensi-
tivity in a cohort of patients suffering from the metabolic
syndrome (Consolim-Colombo et al. 2017).
Observations in experimental studies indicate that

activation of the inflammatory reflex has the potential to
regulate initiation of vascular inflammation. For
example, cholinergic agonists and vagus nerve stimula-
tion blocked endothelial cell activation, leukocyte
extravasation, and recruitment of immune cells to sites
of inflammation in a carrageenan air pouch mouse
model (Saeed et al. 2005). Exposure to acetylcholine also
reduced adhesion molecule expression on TNF-
stimulated endothelial cells (Reardon et al. 2013), which
supports the observation that cholinergic stimulation of
the endothelium limits its activation in inflammation
(Saeed et al. 2005).
Interestingly, TChAT under neural control in spleen

release acetylcholine to regulate release of pro-
inflammatory cytokines in experimental inflammation
(Rosas-Ballina et al. 2011), have the capacity to reduce
blood pressure (Olofsson et al. 2016) and control micro-
vascular contraction and T cell extravasation in infection
(Cox et al. 2019). These observations further support that
components of the inflammatory reflex may participate in
the regulation of vascular inflammation. In this way, it is
possible that there is neural control of recruitment and ac-
tivity of immune cells in atherogenesis (Olofsson et al.
2016; Rosas-Ballina et al. 2011). Of particular interest is that
pharmacological regulation of vascular contraction can
mimic the effects of presence or absence of TChAT, both in
terms of dilatation of tissue arterial trees, extravasation of
antigen-specific T cells, and anti-viral activity. In other
words, changes in vascular contractility are significant for
the efficiency of the anti-microbial defense, extravasation of
T cells, and perhaps also for vascular inflammation in ath-
erosclerosis. It will be interesting to investigate whether
neural control of TChAT is important for regulation of vas-
cular inflammation.
Resolution of inflammation is vital in pathogenesis

and progression of atherosclerosis (Bäck et al. 2019).
A number of recent reports indicate that inflamma-
tion resolution is under neural control. Mouse and
human vagus nerves produce specialized pro-resolving
mediators (SPMs), important effectors in resolution of
inflammation (Serhan et al. 2018). Vagotomy in
peritonitis-induced mice delayed resolution of inflam-
mation and decreased SPMs (Mirakaj et al. 2014).
Electrical vagus nerve stimulation in experimental
peritonitis decreased resolution time (Caravaca et al.
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2017b). While reports on inflammatory reflex activity
and resolution of inflammation in cardiovascular dis-
ease are lacking, it was observed that restoration of
SPMs in murine atherosclerosis suppresses plaque
progression and promotes increased fibrous cap thick-
ness (Fredman et al. 2016).
In the adventitia of medium- and large-size arteries,

artery tertiary lymphoid organs (ATLOs), develop in
proximity of inflammatory foci (Gräbner et al. 2009).
Tertiary lymphoid organs (TLOs) are not formed at
fixed locations but instead develop in various inflamed
non-lymphoid tissues, often as a result of a non-
resolving inflammation (Jones et al. 2016). TLOs regu-
late local immune responses in chronic inflammation,
particularly antibody-mediated responses in health and
disease (Jones et al. 2016). For instance, the formation of
TLOs in autoimmune disease is suggested to be both
beneficial, sequestering cells and limiting their spread
throughout the body, and pathogenic, where TLOs could
be the source of autoreactive and pro-inflammatory lym-
phocytes (Shipman et al. 2017). On the other hand, can-
cer associated TLOs have been linked to a favorable
outcome in patients, due to their role of initiating and
maintaining an immune response against the tumor
(Hiraoka et al. 2016). Intriguingly, some TLO develop-
ment requires vagus nerve innervation which encourages
speculation that neural signals may play a role in devel-
opment also of ATLOs, and raises the question whether
blood vessel innervation regulates vascular immune re-
sponses and atherosclerosis development (Olivier et al.
2016). The currently available data warrants investiga-
tion of the interplay between perivascular lymphoid
structures and vascular innervation in development of
atherosclerosis.
Taken together, these observations identify neural con-

trol of inflammation and resolution in atherosclerosis as
an interesting area of study.
Vagus nerve stimulation and treatment of experimental
cardiovascular disease
Aspects of vagus nerve activity can be assessed by ana-
lyzing heart rate variability (HRV) (Villareal et al. 2002).
HRV is measured by the variation in the time interval
between heartbeats and is an indication of cardiac vagal
activity. It has been reported that monitoring of HRV in
at-risk cardiovascular patients provides prognostic infor-
mation beyond traditional risk factor analysis, although
data is not unequivocal (Villareal et al. 2002; Tsuji et al.
1994; Lanza et al. 1998). Decreased vagal activity may
increase cardiovascular risk in both pre-clinical and clin-
ical experiments (Zhao et al. 2013) supporting a poten-
tial role of vagus nerve signaling in precipitation of
cardiovascular disease.
Pharmacological and electrical vagus nerve stimulation
is currently being investigated in experimental cardiovas-
cular disease (Wang et al. 2019). Acetylcholine and
acetylcholine-receptor agonists could potentially be of
interest to explore further in the pathobiology of cardio-
vascular disease since muscarinic acetylcholine receptors
(mAChRs) play a role in regulating heart rate, smooth
muscle contraction, and in fundamental functions of the
central nervous system (Kruse et al. 2014). Furthermore,
anti-inflammatory and cardioprotective effects of acetyl-
choline have been demonstrated in ischemia-reperfusion
(I/R)-induced oxidative stress models, in which increased
acetylcholine levels have been shown to decrease react-
ive oxygen species formation when rat cardiomyocytes
were exposed to hypoxia/reoxygenation to mimic I/R
injury (Miao et al. 2013). Cholinergic drugs (e.g. choline,
acetylcholine, pyridostigmine) are being studied in treat-
ment of cardiovascular disease (Liu et al. 2019). For
example, choline protected against ischaemia-induced
arrhythmias (Wang et al. 2012a) and prevented cardiac
hypertrophy induced by angiotensin II (Wang et al.
2012b). Acetylcholine is already being investigated as a
novel target in drug development for a number of dis-
eases (e.g. Alzheimer’s disease, schizophrenia, type 2 dia-
betes) (Kruse et al. 2014). Pyridostigmine is a
cholinesterase inhibitor, which has been shown in recent
studies to restore baroreflex sensitivity, improve heart
rate variability, and improve peripheral vascular endo-
thelial function in rats with myocardial infarction
(Gavioli et al. 2014; de La Fuente et al. 2013; Liu et al.
2015; Qin et al. 2014). While the use of cholinergic
drugs is currently limited in the clinic, pre-clinical stud-
ies indicate modulation of vagal nerve activation could
have potentially cardiovascular protective effects. Vagus
nerve stimulation may be an alternative to pharmaco-
logical treatment for activation of α7nAChR or other
components of the inflammatory reflex (Eberhardson
et al. 2019a; Eberhardson et al. 2019b). VNS ameliorated
inflammation in a number of experimental disease
models such as endotoxemia, rheumatoid arthritis, in-
flammatory bowel disease, and kidney ischemia-
reperfusion injury (Borovikova et al. 2000; Steinberg
et al. 2016a; Levine et al. 2014; Bonaz et al. 2017). Vagus
nerve stimulation reduced myocardial infarct size by a
mechanism that requires the α7nAChR in rats (Kiss
et al. 2017), and decreased inflammation in myocardial
ischemia-reperfusion injury under experimental condi-
tions (Brack et al. 2013; Premchand et al. 2014; Wang
et al. 2012c; Bernik et al. 2002). There is encouraging
data from a few small studies that used implanted
vagus nerve stimulators to treat rheumatoid arthritis
(Koopman et al. 2016) and Crohn’s disease (Eberhard-
son et al. 2019a; Bonaz et al. 2016), demonstrating
proof-of-concept that this technology may be feasible
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in clinical use, although additional data is required to
sufficiently establish beneficial clinical effects in
people with inflammatory diseases.
Attenuation of excessive inflammation can reduce the

risk of cardiovascular disease as evidenced by a plethora
of animal studies and the CANTOS trial (Libby et al.
2019). Because electrical activation of the inflammatory
reflex can reduce pro-inflammatory cytokine levels, it
would be interesting to investigate VNS in experimental
atherosclerosis. Progression of atherosclerosis is slow
and long-term experiments with a duration of many
weeks or months are required to properly study effects
and mechanisms. It has been challenging to study the ef-
fects of VNS in the well-established animal models of
atherosclerosis because it requires implantation of VNS
electrodes that maintain integrity and functionality of
the relatively small interface between the cervical vagus
nerve and the electrode over extended periods of time.
Chronic interfacing with the peripheral nerves such as
the vagus nerve is being explored (Caravaca et al.
2017a), however, implementation in mouse experimental
disease models has been difficult. The use of mice is im-
portant because the models are well-characterized and
permit efficient mapping of mechanism using genetic
tools. Regrettably, suitable technology to perform per-
ipheral nerve stimulation in mice over long periods of
time in a reasonably practical way is, to the best of our
knowledge, not yet available.

Future perspectives of experimental bioelectronic
medicine
The concept of neural reflex regulation of inflammation
postulates that the body senses inflammatory processes
through a sensory arc, and uses this information to
modulate efferent signals through the motor arc. Thus,
it may be possible to develop devices and algorithms to
monitor cytokine levels and discriminate between differ-
ent types of inflammation continuously and in real time.
Such devices may enable new approaches in inflamma-
tion research and provide important new insights into
the dynamics of inflammation in health and disease.
Recording of electrical vagus nerve activity has revealed

that intraperitoneal injection of pro-inflammatory cytokines
TNF and IL-1, respectively, results in distinct electrical sig-
natures (Caravaca et al. 2017a; Steinberg et al. 2016b; Zanos
et al. 2018; Masi et al. 2019). Additionally, motor cortex ac-
tivity was recorded, decoded, and used to purposefully
move a paralyzed patient’s own hand by connecting elec-
trodes to muscles in the arm (Bouton et al. 2016). These
discoveries demonstrate that aspects of the electrical signals
that arise in the nervous system can be decoded and under-
stood in a useful way. It is conceivable that this knowledge
could potentially be used to selectively activate the sensory
arc of a neural reflex in order to evoke a specific anti-
inflammatory response. We are still only in the beginning
of deconvoluting these signals in peripheral nerves, and al-
though the potential applications are very exciting, it will
still likely take considerable time before this technology can
be standardized and useful outside experimental neurosci-
ence and immunology.
A limitation to studying cardiovascular disease with

the use of bioelectronic devices is the lack of chronic,
functional electrodes, specifically designed for mouse
peripheral nerves. The field is expanding and different
strategies are currently being explored to overcome this
challenge, implementing innovations from advances in
biomaterials and biophysics. In particular, flexible micro-
electrodes are revealing themselves promising to be used
as chronic implants, in both stimulation and recording
of nerve activity (Caravaca et al. 2017a). Other methods
and approaches are being considered, one of which con-
cerns wireless electrode technology that can be activated
by external stimuli. These devices can elicit action po-
tentials upon illumination (Jakešová et al. 2019) or ex-
posure to a magnetic field (Lee et al. 2016). Another
alternative strategy for non-invasive nerve stimulation is
the use of ultrasound. Delivery of pulsed ultrasound to
the spleen stimulates components of the cholinergic
anti-inflammatory pathway, and reduced kidney tissue
destruction and decreased inflammation after ischemia-
reperfusion injury as well as reduced TNF levels in acute
endotoxemia (Cotero et al. 2019; Okusa et al. 2017). Fur-
ther research needs to be performed to assess and inte-
grate non-invasive miniaturized stimulation interfaces in
mice.

Conclusions
Atherosclerosis is a chronic inflammatory disease, and as
neural reflexes regulate aspects of both innate and adap-
tive immunity, vagus nerve stimulation is of interest to
explore as a potential therapeutic strategy in cardiovas-
cular disease. Pharmacological and electrical vagus nerve
stimulation has been shown to ameliorate inflammation
in a wide variety of experimental and some clinical stud-
ies of inflammatory diseases. However, the role of nerves
and the inflammatory reflex in atherosclerosis is poorly
understood. Moving forward, technological progress and
expanding knowledge of mechanisms of neural control
of vascular inflammation will be instrumental for any
potential advancement of bioelectronic medicine into
treatment of cardiovascular disease.
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